Skip to main content

A Geometric Approach for Multi-Robot Exploration in Orthogonal Polygons

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

We present an algorithm to explore an orthogonal polygon using a team of p robots. Our algorithm is based on a single-robot polygon exploration algorithm and a tree exploration algorithm. We show that the exploration time of our algorithm is competitive (as a function of p) with respect to the offine optimal exploration algorithm. In addition to theoretical analysis, we discuss how this strategy can be adapted to real-world settings. We investigate the performance of our algorithm through simulations for multiple robots and experiments with a single robot. We conclude with a discussion of our ongoing work.

This material is based upon work supported by the National Science Foundation under Grant No. 1566247.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, N.S., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Technical report, Citeseer (1993)

    Google Scholar 

  2. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Autonomous Robots 33(4) (2012) 427–444

    Google Scholar 

  3. Bhattacharya, A., Ghosh, S.K., Sarkar, S.: Exploring an unknown polygonal environment with bounded visibility. In: International Conference on Computational Science, Springer (2001) 640–648

    Google Scholar 

  4. Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., Kumar, V.: Information-theoretic planning with trajectory optimization for dense 3d mapping. In: Proceedings of Robotics: Science and Systems. (2015)

    Google Scholar 

  5. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE International Symposium on, IEEE (1997) 146–151

    Google Scholar 

  6. Motwani, R., Raghavan, P.: Randomized algorithms. Chapman & Hall/CRC (2010)

    Google Scholar 

  7. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. i: the rectilinear case. Journal of the ACM (JACM) 45(2) (1998) 215–245

    Google Scholar 

  8. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press Oxford (1987)

    Google Scholar 

  9. Chin,W.p., Ntafos, S.: Optimum watchman routes. Information Processing Letters 28(1) (1988) 39–44

    Google Scholar 

  10. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive online approximation of the optimal search ratio. SIAM Journal on Computing 38(3) (2008) 881–898

    Google Scholar 

  11. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84(1) (1991) 127–150

    Google Scholar 

  12. Chvatal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B 18(1) 18–41

    Google Scholar 

  13. Fisk, S.: A short proof of chvátal’s watchman theorem. Journal of Combinatorial Theory, Series B 24(3) (1978) 374

    Google Scholar 

  14. Schuchardt, D., Hecker, H.D.: Two np-hard art-gallery problems for orthopolygons. Mathematical Logic Quarterly 41(2) (1995) 261–267

    Google Scholar 

  15. Ghosh, S.K., Burdick, J.W., Bhattacharya, A., Sarkar, S.: Online algorithms with discrete visibility-exploring unknown polygonal environments. IEEE robotics & automation magazine 15(2) (2008) 67–76

    Google Scholar 

  16. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM Journal on Computing 31(2) (2001) 577–600

    Google Scholar 

  17. Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM Journal on Computing 28(4) (1999) 1298–1309

    Google Scholar 

  18. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. Journal of the ACM (JACM) 45(5) (1998) 753–782

    Google Scholar 

  19. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3) (2006) 166–177

    Google Scholar 

  20. Dynia, M., Łopusza\(\acute{\text{N}}\)ski, J., Schindelhauer, C.: Why robots need maps. In: International Colloquium on Structural Information and Communication Complexity, Springer (2007) 41–50

    Google Scholar 

  21. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.i.: Online graph exploration algorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization 28(2) (2014) 480–495

    Google Scholar 

  22. Dynia, M., Kuty lowski, J., auf der Heide, F.M., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: International Symposium on Mathematical Foundations of Computer Science, Springer (2006) 327–338

    Google Scholar 

  23. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures, ACM (2012) 27–36

    Google Scholar 

  24. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Transactions on robotics 21(3) (2005) 376–386

    Google Scholar 

  25. Schwager, M., Dames, P., Rus, D., Kumar, V.: A multi-robot control policy for information gathering in the presence of unknown hazards. In: Proceedings of International Symposium on Robotics Research, Aug. (2011)

    Google Scholar 

  26. Cesare, K., Skeele, R., Yoo, S.H., Zhang, Y., Hollinger, G.: Multi-uav exploration with limited communication and battery. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2015) 2230–2235

    Google Scholar 

  27. Holz, D., Basilico, N., Amigoni, F., Behnke, S.: A comparative evaluation of exploration strategies and heuristics to improve them. In: ECMR. (2011) 25–30

    Google Scholar 

  28. Whaite, P., Ferrie, F.P.: Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3) (1997) 193–205

    Google Scholar 

  29. Moorehead, S.J., Simmons, R., Whittaker, W.L.: Autonomous exploration using multiple sources of information. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. Volume 3., IEEE (2001) 3098–3103

    Google Scholar 

  30. Julian, B.J., Karaman, S., Rus, D.: On mutual information-based control of range sensing robots for mapping applications. The International Journal of Robotics Research (2014) 0278364914526288

    Google Scholar 

  31. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environment mapping with mobile robots. Robotics and Autonomous Systems 58(5) (2010) 684–699

    Google Scholar 

  32. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software. (2009)

    Google Scholar 

  33. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. Volume 3., IEEE (2004) 2149–2154

    Google Scholar 

  34. : AMCL ROS Packagel. http://wiki.ros.org/amcl Accessed: 2016-10-30.

  35. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34(3) (2013) 189–206

    Google Scholar 

  36. Labbé, M., Michaud, F.: Online global loop closure detection for large-scale multisession graph-based slam. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2014) 2661–2666

    Google Scholar 

  37. Labbe, M., Michaud, F.: Appearance-based loop closure detection for online largescale and long-term operation. IEEE Transactions on Robotics 29(3) (2013) 734–745

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Tokekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Premkumar, A.P., Yu, K., Tokekar, P. (2020). A Geometric Approach for Multi-Robot Exploration in Orthogonal Polygons. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_57

Download citation

Publish with us

Policies and ethics