Skip to main content

Assignment Algorithms for Variable Robot Formations

  • Chapter
  • First Online:
  • 1429 Accesses

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

This paper describes algorithms to perform optimal assignment of teams of robots translating in the plane from an initial formation to a variable goal formation. We consider the case when each robot is to be assigned a goal position, the individual robots are interchangeable, and the goal formation can be scaled or translated.We compute the costs for all candidate pairs of initial, goal robot assignments as functions of the parameters of the goal formation, and partition the parameter space into equivalence classes invariant to the cost order using computational geometry techniques. We compute a minimum completion time assignment for an equivalence class by formulating it as a linear bottleneck assignment problem (LBAP). To improve efficiency, we solve the LBAP problem for each equivalence class by incrementally updating the solution as the formation parameters are varied. This work is motivated by applications that include the motion of droplet formations in digital microfluidic lab-on-a-chip devices, and of robot and drone formations in the plane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, A., de Berg, M., Halperin, D., Solovey, K.: Efficient multi-robot motion planning for unlabeled discs in simple polygons. In: 11th International Workshop on the Algorithmic Foundations of Robotics (WAFR) (2014)

    Google Scholar 

  2. Akella, S., Hutchinson, S.: Coordinating the motions of multiple robots with specified trajectories. In: IEEE International Conference on Robotics and Automation. pp. 624–631. Washington, DC (May 2002)

    Google Scholar 

  3. Alonso-Mora, J., Baker, S., Rus, D.: Multi-robot navigation in formation via sequential convex programming. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4634–4641 (2015)

    Google Scholar 

  4. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research: The 14th International Symposium ISRR, pp. 3–19. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  5. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and Systems. pp. 137–144 (2010)

    Google Scholar 

  6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, third edn. (2008)

    Google Scholar 

  7. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, revised reprint edn. (2012)

    Google Scholar 

  8. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  9. Derenick, J.C., Spletzer, J.R.: Convex optimization strategies for coordinating large-scale robot formations. IEEE Transactions on Robotics 23(6), 1252–1259 (2007)

    Google Scholar 

  10. Halperin, D.: Personal communication (2016)

    Google Scholar 

  11. Halperin, D., Sharir, M.: Arrangements. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton, FL, third edn. (2017), to appear

    Google Scholar 

  12. Katsev, M., Yu, J., LaValle, S.M.: Efficient formation path planning on large graphs. In: 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  13. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)

    Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA (1991)

    Google Scholar 

  15. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, U.K. (2006), available at http://planning.cs.uiuc.edu/

  16. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (Dec 1998)

    Google Scholar 

  17. Liu, L., Shell, D.: Large-scale multi-robot task allocation via dynamic partitioning and distribution. Autonomous Robots 33(3), 291–307 (2012)

    Google Scholar 

  18. Luna, R., Bekris, K.E.: Efficient and complete centralized multi-robot path planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-11). San Francisco, CA (25-30 Sept 2011)

    Google Scholar 

  19. Ma, Z., Akella, S.: Coordination of droplets on light-actuated digital microfluidic systems. In: IEEE International Conference on Robotics and Automation. pp. 2510–2516. St. Paul, MN (May 2012)

    Google Scholar 

  20. Nam, C., Shell, D.A.: When to do your own thing: Analysis of cost uncertainties in multi-robot task allocation at run-time. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington (May 2015)

    Google Scholar 

  21. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey (1982)

    Google Scholar 

  22. Park, S.Y., Teitell, M.A., Chiou, E.P.Y.: Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip 10, 1655–1661 (2010), https://doi.org/10.1039/C001324B

  23. Pei, S.N., Valley, J.K., Neale, S.L., Jamshidi, A., Hsu, H., Wu, M.C.: Lightactuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. In: 23rd IEEE International Conference on Micro Electro Mechanical Systems. pp. 252–255. Wanchai, Hong Kong (Jan 2010)

    Google Scholar 

  24. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research 24(4), 295–310 (Apr 2005)

    Google Scholar 

  25. Shekar, V., Campbell, M., Akella, S.: Towards automated optoelectrowetting on dielectric devices for multi-axis droplet manipulation. In: IEEE International Conference on Robotics and Automation. pp. 1431–1437. Karlsruhe, Germany (May 2013)

    Google Scholar 

  26. Simeon, T., Leroy, S., Laumond, J.P.: Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18(1), 42–49 (Feb 2002)

    Google Scholar 

  27. Solovey, K., Halperin, D.: k-color multi-robot motion planning. International Journal of Robotics Research 33(1), 82–97 (2014)

    Google Scholar 

  28. Solovey, K., Halperin, D.: On the hardness of unlabeled multi-robot motion planning. In: Robotics: Science and Systems. Rome, Italy (Jul 2015)

    Google Scholar 

  29. Solovey, K., Yu, J., Zamir, O., Halperin, D.: Motion planning for unlabeled discs with optimality guarantees. In: Robotics: Science and Systems. Rome, Italy (Jul 2015)

    Google Scholar 

  30. Turpin, M., Michael, N., Kumar, V.: CAPT: Concurrent assignment and planning of trajectories for multiple robots. The International Journal of Robotics Research 33(1), 98–112 (2014)

    Google Scholar 

  31. Turpin, M., Mohta, K., Michael, N., Kumar, V.: Goal assignment and trajectory planning for large teams of interchangeable robots. Autonomous Robots 37(4), 401–415 (Dec 2014)

    Google Scholar 

  32. Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning. Artificial Intelligence 219, 1–24 (Feb 2015)

    Google Scholar 

  33. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine 29(1), 9–19 (2008)

    Google Scholar 

  34. Yu, J., LaValle, S.M.: Multi-agent path planning and network flow. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X, Springer Tracts in Advanced Robotics, vol. 86, pp. 157–173. Springer Berlin Heidelberg (2013)

    Google Scholar 

  35. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Akella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akella, S. (2020). Assignment Algorithms for Variable Robot Formations. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_58

Download citation

Publish with us

Policies and ethics