Skip to main content

Generalized Secret Sharing Schemes Using N\(^\mu \)MDS Codes

  • Conference paper
  • First Online:
  • 410 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11989))

Abstract

Mehta et al. [11] recently proposed an \({{\,\mathrm{NMDS}\,}}\) code-based secret sharing scheme having a richer access structure than the traditional (tn) threshold secret sharing schemes, and is based on two mutually nonmonotonic sets of user groups of sizes t and \(t-1\) respectively, where \(n \ge t > 1\) corresponds to the total number of users. We give a full generalization of their scheme with complete security proofs. We propose an efficient generalized secret sharing scheme constructed using \({{\,\mathrm{N^{\mu }MDS}\,}}\) codes with time complexity of \(O(n^3)\). The scheme accepts an access structure constructed using \(\mu +1\) mutually nonmonotonic sets of user groups with sizes, \(t, t-1, \dots , t-\mu \), respectively, where \(1 \le \mu < t\), and the parameter t defines the threshold such that all user groups of size greater than t can recover the secret. The proposed secret sharing scheme is perfect and ideal and has robust cheating detection and cheater identification features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  2. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS, pp. 313–317. AFIPS Press (1979)

    Google Scholar 

  3. Blakley, G., Kabatiansky, G.: Generalized ideal secret-sharing schemes and matroids. Probl. Peredachi Informatsii 33(3), 102–110 (1997)

    MathSciNet  Google Scholar 

  4. Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–34. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053421

    Chapter  Google Scholar 

  5. Dodunekov, S.: Applications of near MDS codes in cryptography. In: Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 23, pp. 81–86. IOS Press (2009)

    Google Scholar 

  6. Harn, L., Lin, C.: Detection and identification of cheaters in \((t, n)\) secret sharing scheme. Des. Codes Cryptograph. 52(1), 15–24 (2009)

    Article  MathSciNet  Google Scholar 

  7. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  8. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–64 (1989)

    Google Scholar 

  9. Massey, J.: Minimal codewords and secret sharing. In: Sixth Joint Swedish-Russian Workshop on Information Theory, Molle, Sweden, pp. 276–279 (1993)

    Google Scholar 

  10. McEliece, R., Sarwate, D.: On sharing secrets and Reed-Solomon codes. Commun. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  11. Mehta, S., Saraswat, V., Sen, S.: Secret sharing using near-MDS codes. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS, vol. 11445, pp. 195–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16458-4_12

    Chapter  MATH  Google Scholar 

  12. Pieprzyk, J., Zhang, X.-M.: Ideal threshold schemes from MDS codes. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 253–263. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4_18

    Chapter  Google Scholar 

  13. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  14. Viswanath, G., Rajan, B.S.: Matrix characterization of generalized Hamming weights. In: IEEE International Symposium on Information Theory, p. 61. IEEE (2001)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Department of Mathematics, BITS Goa, Indian Institute of Technology, Jammu, and R. C. Bose Centre for Cryptology and Security, ISI Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Saraswat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, S., Saraswat, V. (2020). Generalized Secret Sharing Schemes Using N\(^\mu \)MDS Codes. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics