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Abstract. In this paper we study the balance matrix that gives the order of balance of any
binary word. In addition, we define for Christoffel words a new matrix called second order
balance matrix. This matrix gives more information on the balance property of a word that
codes the number of occurrences of the letter 1 in successive blocks of the same length for
the studied Christoffel word. By taking the maximum of the Second order balance matrix we
define the second order of balance and we are able to order the Christoffel words according
to these values. Our construction uses extensively the continued fraction associated with the
slope of each Christoffel word, and we prove a recursive formula based on fine properties of
the Stern-Brocot tree to construct second order matrices. Finally, we show that an infinite
path on the Stern-Brocot tree, which minimizes the second order of balance is given by a
path associated with the Fibonacci word.
Index terms— Balance property. Second order balance property. Christoffel words. Stern-
Brocot tree. Continued fractions

1 Introduction

Balanced words appear in many developments of combinatorics on words and the balance property
is considered as a fine tool to investigate the structure of words [17, 21]. As a typical example of
infinite balanced words, Sturmian words could be constructed equivalently by discretizations of
irrational slope lines in a square grid [11, 30], by billiard words in a square [2, 24] or by coding
of irrational rotations on a unit circle with a partition in two intervals [11]. The finite balanced
words are given by discretizations of rational slope lines in a square grid and have been studied
in particular by Christoffel [9]. Interestingly, finite and infinite balanced words show up in specific
optimization problems [1, 26, 30] and for example optimal schedules for job-shop problems with two
tasks are exactly given by balanced words [14, 19, 30]. Furthermore, particular solutions of job-shop
problems with k tasks sharing the same ressource [1] are given by finite or infinite balanced words
on a k−letters alphabet where the balanced property is checked on each letter of the alphabet[1,
23, 29]. More precisely, for k = 2 the solutions of the job-shop problem is coded by an infinite
word which is either a periodic balanced word or an aperiodic balanced word [14, 19]. The situation
gets more complicated for k > 2, which leads to the famous Fraenkel’s conjecture[12, 13]. It is
restated in combinatorics on words terms: An infinite word on a k−letters alphabet balanced on
each letter of the alphabet and with all letters frequencies pairwise distinct is given by an infinite
periodic word constructed on an unique period word FRk (up to a permutation of letter and
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circular permutation) by the recursive formula FRk = FRk−1kFRk−1 with FR3 = 1213121. Many
researchers have worked on the general problem of infinite balanced words on an alphabet with one
letter [16] or equivalently to cover integers by Beatty sequences [13, 27]. The conjecture is proved
for k = 3 by Morikawa [20], for k = 4 by Altman, Gaujal and Hordijk [27], for k = 5 and k = 6
by Tijdeman [29] and for k = 7 by Barat et Varju [15] and the conjecture is still open for k > 7.
Indeed, in order to investigate new discrete tools that allow us to deeply understand the structure
of balanced words, we propose a second order balance property for Christoffel words that gives a
refinement for the balance property. In fact, we define for Christoffel words a new matrix called
second order balance matrix which gives information on the balance property of a word that codes
the number of 1’s of successive blocks of same length in the studied Christoffel word. Thus we
investigate balance property on successive blocks instead of balance property on letters for second
order balance property. The main idea, to go further in the resolution of the Fraenkel’s conjecture,
is to consider synchronization of the blocks instead of synchronization of letters and this is why we
introduce the notion of second order of balance.

In Section 2, we recall some properties of the Christoffel words. In Section 3, we define the
balance matrix which gives information on the number of occurrences of a given letter in all factors
of a given binary circular word. This balance matrix gives us the order of balance, for binary words.
Afterwards, in Section 4, we introduce the second order balance matrix of a given Christoffel word by
computing the balance matrix for the rows of the associated balance matrix. We show in Section 5
that this matrix has many symmetries and is constructed by using properties of continued fractions
and the Stern-Brocot tree. We present in Section 6 a recursive construction for the second order
balance matrix by considering the properties of the continued fraction expansion for the slope of
each Christoffel word. In Section 7, we show that an infinite path on the Stern-Brocot tree, which
minimizes the second order of balance, is given by a path associated with the Fibonacci word.
Section 8 is left for the perspectives of this work.

2 Notation and Christoffel words

Let A be an alphabet of cardinality m, the word w is the concatenation of letters of this alphabet and
we write w ∈ A∗, where A∗ represents the set of all the words formed by the alphabet A. We denote
by n = |w| the length of the word and by |w|a the number of occurrences of the letter a in the word w.
The notation w[i . . . j] refers to the factor of the word w from position i to position j. The notation
wω represents: wω = ww · · ·w · · · and named “circular word associated with w”. By convention,
w0 = ε and a word w is said primitive if it is not the power of a nonempty word. Two words w and
w′ are conjugate of order k if and only if there exist u, v such that |u| = k with w = uv and w′ = vu
and we denote: w ≡k w′. When the exact value of k is not relevant, we simply write w ≡ w′ and
we say that the two words are conjugate. A positive integer p is a period of w if w[i] = w[i + p];
for all 1 ≤ i ≤ |w| − p. Given a word w = aw′ where a is a letter, we note a−1w = w′ that is the
removal of the letter a at the beginning of w. If w ends with letter a, then the notation wa−1 is
defined accordingly. Let A = {a0, a1, . . . , am−1} be an alphabet, we let · be the anti-morphism such
that: a0 = am−1, a1 = am−2 . . . ai = am−1−i. A word w ∈ {0, 1}∗ is k−balanced if and only if for
all factors u, v of w, we get: |u| = |v| =⇒ ||u|1 − |v|1|| ≤ k. The word w is called balanced if k = 1.

Christoffel words [9] have many equivalent definitions and characterizations. The following geo-
metrical definition is taken from [7] (see [5] for a self-contained survey). The lower Christoffel path
of slope a

b , where a and b are relatively prime, is the path from (0, 0) to (b, a) in the integer lattice
Z× Z that satisfies the following conditions:



1. The path lies below the line segment that begins at the origin and ends at (b, a).
2. The region enclosed by the path and the line segment contains no other points of Z×Z besides

those of the path.

We encode the lower Christoffel path (or simply Christoffel word) by means of a word in the alphabet
A using 0 (resp. 1) for any unit horizontal (vertical) step. We get the Christoffel word of slope a

b
denoted: C(ab ), see Figure 1. Equivalently, the Christoffel word w = C

(
a
b

)
is obtained by calculating

the elements of the sequence (ri)0≤i≤n, where n = a + b as follows: ri = ia mod n. Each letter,

w[i], ∀ 1 ≤ i ≤ n, of the word w and length n is obtained by computing: w[i] =

{
0 if ri−1 < ri,
1 otherwise.

Example 1. Let (a, b) = (3, 5), the sequence (ri)0≤i≤8 = (0, 3, 6, 1, 4, 7, 2, 5, 0) defines the Christoffel
word C

(
3
5

)
= 00100101.

(0, 0)

(5, 3)

0 0

10 0

10

1

Fig. 1: Illustration of the geometrical definition of Christoffel words. The Christoffel path goes from (0,0)
to (5,3) and C

(
3
5

)
= 00100101.

3 Balance matrix

In this section, we introduce a new matrix used to obtain the order of balance for any binary word
in an explicit way. The ith row of the matrix M , M [i], is seen as a word where each entry of the
matrix is a letter. Given a word w ∈ A∗ of length n, we let Sw be the n × n matrix defined by
Sw[i, j] = w[j] + . . . w[i+ j] over the circular word w. By definition, we have that w is δ-balanced if

δ = max
i

(max(Sw[i])−min(Sw[i])) .

The balance matrix Bw, is defined from Sw by subtracting the minimum value on each row,

Bw[i, j] = Sw[i, j]−min(Sw[i]).

Obviously, we have that w is (maxBw)-balanced.
It is clear that by construction, if w is not a sequence of 1′s, then the first row of Bw is equal

to w. If k < |w| is a period of wω, again by construction we have that the row Bw[k] contains only
zeros. The converse is also true, an integer k such that the row Bw[k] contains only zeros is a period
of wω. Consequently, a row of zeros is called a period row. Note that n = |w| is always a period of



wω and therefore we define the matrix Bw as a (n − 1) × n matrix since the n-th row would not
add any information.

For the sake of simplicity, when working with the Christoffel word C
(
a
b

)
, the balance matrix

BC( ab ) is simply denoted B a
b
.

Example 2. Let us consider the rational number 5
2 and n = 7. By writing the Christoffel word

w = C( 5
2 ) = 0110111, the elements of the balance matrix Bw and Sw are the following:

Sw =


0 1 1 0 1 1 1
1 2 1 1 2 2 1
2 2 2 2 3 2 2
2 3 3 3 3 3 3
3 4 4 3 4 4 3
4 5 4 4 5 4 4
5 5 5 5 5 5 5

 , B 5
2

=


0 1 1 0 1 1 1
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 1 0
0 1 0 0 1 0 0

 .

3.1 Properties of the balance matrix

In this section, we present some properties of the matrix Bw, where w is a binary word of length
|w| = n, allowing us to restrict the work to the upper half of the balance matrix since the lower
part will be obtained by symmetry.

Definition 1. Two words w and w′ are complementary if w ≡k w′ for some k. Moreover, a word
is said to be autocomplementary if it is complementary to itself.

Example 3. The word w = 0110110010 is an autocomplementary word since we have: w ≡5 w.
While w = 0000100 and w′ = 0111111 are such that w ≡4 w′.

We show some basic combinatorial properties of the matrix Sw that will be used in a further proof.
All the proofs of this section can be found in the Appendix.

Property 1. For any binary word w of length n, and 1 ≤ i ≤ n, the matrix Sw satisfies:

1. maxSw[i] + minSw[n− i] = |w|1,
2. minSw[i] + maxSw[n− i] = |w|1.

In particular, if w is a 1−balanced Christoffel word, we have:

1. minSw[i] + minSw[n− i] = |w|1 − 1,
2. maxSw[i] + maxSw[n− i] = |w|1 + 1,

By applying the results of Property 1 and the definition of Sw, we can notice that the lower half of
Bw is deduced from its upper half part, as we can see in Property 2.

Property 2. The balance matrix is such that for all 1 ≤ i < n, Bw[i] ≡n−i Bw[n− i].

If B a
b

has a middle row, then this row is autocomplementary as we can seein Example 4.

Corollary 1. If n is an even number, B a
b
[n2 ] is an autocomplementary row.



Example 4. Let us consider the rational number 3/7 with n = 10. The balance matrix B 3
7

shows

that B 3
7
[5] is an autocomplementary row.

B 3
7

=



0 0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1
0 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 1 0 1 1


.

Remark 1. In the case where a = 1, the balance matrix is such that: B 1
b
[i] = 0(n−i)1i.

3.2 Construction of the balance matrix for Christoffel words

In this section, we are interested in giving a direct construction for the balance matrix of a Christoffel
word, by determining for each row of Bw, the positions of the letter 1. For that, we start by defining
the set of positions for the letter 1 in C(ab ).

Definition 2. Let w be a Christoffel word of slope a/b. The set of decreasing positions of w,
denoted D(a, b), is the set of the positions of the occurrences of the letter 1 in w. More formally,
D(a, b) = {1 ≤ i ≤ n | w[i] = 1}.
The following theorem is a reformulation of Paquin and Reutenauer’s result([22], Corollary 3.2),
that describes the set of decreasing positions of a Christoffel word.

Theorem 1. Let α be such that αa ≡ −1 mod n, then the set D(a, b) is :

D(a, b) = {(iαmodn) + 1 | i = 1 . . . a}.

Example 5. Let us consider the rational number a/b = 3/5 with n = 8, α = 5 and w = 00100101.
The set of occurrences of the letter 1 is D(3, 5) = {(5imod 8) + 1 | i = 1 . . . 3} = {3, 6, 8}.

Using Theorem 1, we can conclude that B a
b

and B b
a

are not equal but complementary as Lemma

1 shows. The proof can be found in the Appendix.

Lemma 1. The balance matrices B a
b

and B b
a

are conjugate in the sense that:

B a
b
[i] ≡α B b

a
[i] ∀ 1 ≤ i < n; where αa ≡ −1 modn.

For this part, w is a Christoffel word and we give a recursive construction of Bw by identifying
for each row i, the set of positions of the 1′s. This set is denoted by Di, where for each row i in Bw,
Di = {j | Bw[i, j] = 1}, with n = |w| and 1 ≤ j ≤ n. For any set of integers S and any integer k,
we denote S + k = {a+ k | a ∈ S}.
Theorem 2. If a < b then the sets (Di)1≤i≤n−1 are recursively obtained as follows: D1 = D(a, b)
and for each i from 2 to n− 1:

Di =

{
Di−1 ∪ (D1 − (i− 1) modn) if i /∈ D1

Di−1 ∩ (D1 − (i− 1) modn) if i ∈ D1

(1)

The proof can be found in the Appendix.

Example 6. Let us consider the rational number 2/7 mod 9. By calculating the set of decreasing
values for each row of B 2

7
, we get the following matrix:



D1 = {5, 9}
D2 = D1 ∪ {4, 8} = {4, 5, 8, 9}
D3 = D2 ∪ {3, 7} = {3, 4, 5, 7, 8, 9}
D4 = D3 ∪ {2, 6} = {2, 3, 4, 5, 6, 7, 8, 9}
D5 = D4 ∩ {1, 5} = {5} ⇒
D6 = D5 ∪ {4, 9} = {4, 5, 9}
D7 = D6 ∪ {3, 8} = {3, 4, 5, 8, 9}
D8 = D7 ∪ {2, 7} = {2, 3, 4, 5, 7, 8, 9}
D9 = D8 ∩ {1, 6} = {}.

B 2
7

=



0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1
0 0 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 1 1 1 0 0 1 1
0 1 1 1 1 0 1 1 1


.

From this construction, we can get a relation between the number of occurrences of 1 in each
row of the balance matrix of Christoffel words and the numerator of the slope related to this word.

Lemma 2. For the balance matrix B a
b

, we have: |Di| = i.a mod n, where |Di| is the cardinal of
the set Di.

Note: The proof can be found in the Appendix. This Lemma confirms that the period row is
made only of zeros since |Dn| = n.a mod n = 0, hence we have no occurrences for the letter 1 in
this row.

4 Second order balance matrix

Let wω be a 1-balanced circular word associated with w; by computing the balanced property on
each row of Bw, we get a refinement of the balanced property for w. For any factor v of length j,
we can find kj or kj + 1 occurrences of the letter 1. The second order balance is the repartition of
these blocks in a binary balanced word. This second order balance is computed via a matrix called
the second order balance matrix. In other words, we are studying the balance of each row of Bw.
For a pair of integers i, j, where 1 ≤ i, j ≤ |w| − 1, we consider the word Bw[i] and we list all
its factors of length j. Among these factors, we choose p, a factor that maximizes the number of
occurrences of the letter 1 and q, a factor that minimizes it. The entry Uw[i, j] is given by |p|1−|q|1.
Equivalently, if L`(w) is the restriction of the language of wω to words of length `, then:

Uw[i, j] = max
v∈Lj(Bw[i])

|v|1 − min
v∈Lj(Bw[i])

|v|1.

In other words, we can define the second order balance matrix Uw by:

Definition 3. Let w be a word such that wω is 1-balanced or, equivalently, that Bw is a binary
matrix. The second order balance matrix Uw = (uij)1≤i,j≤n−1 where Uw[i, j] = max(B(Bw[i])[j]).

Definition 4. The second order of balance of a circular 1-balanced word w is δ2(w) = max(Uw).

Once again, in order to lighten the notation, when working with the Christoffel word C
(
a
b

)
, the

second order balance matrix UC( ab ) is simply denoted U a
b
.

For the rest of the paper, we let w be a Christoffel word of slope a/b and length n = a+b, such that:
w = C(ab ). The second order balance matrix of a Christoffel word of slope a

b , U a
b
, is of dimension

(n− 1)× (n− 1).



Example 7. Let us consider the rational number a
b = 3

7 with n = 10. The balance matrix B 3
7

was

calculated previously and B 3
7
[5] = [0, 0, 1, 1, 0, 1, 1, 0, 0, 1]. By computing the balance matrix for this

word and taking the blocks of length 5 we get the 5th row of SB 3
7

[5] where the difference between the

maximum and the minimum values of each row of SB 3
7

[5] determines the entries of U 3
7
[5]. Hence,

with these two blocks 00 11011 001 , we obtain the element U 3
7
[5, 5] = 4 − 1 = 3 as we can see in

the following second order balance matrix of 3
7 , where we also get δ2(C( 3

7 )) = 3.

U 3
7

=



1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1
1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1


.

Properties of the matrix Ua
b

Now we give some properties of the second order balance matrix in order to show that U a
b

= U b
a

.

Hence, we can restrict our study to the irreducible fractions a/b with a < b. But before that, we
prove the three symmetries that appear in this matrix. From Section 3.1, we have that the rows of
the upper half of B a

b
are complementary to the rows of its lower half, which induces the symmetries

in the matrix U a
b
. More precisely, the second order balance matrix U a

b
of dimension (n−1)×(n−1),

has horizontal, vertical and diagonal symmetries. The axis of symmetry are at position n
2 or between

n−1
2 and n+1

2 depending on the parity of n.

Property 3. For any position (i, j), U a
b
[i, j] = U a

b
[n− i, j] = U a

b
[i, n− j] = U a

b
[n− i, n− j].

Proof. By Lemma 2, we have that for any 1 ≤ i ≤ n − 1, Bw[i] ≡n−i Bw[n− i] where n = a + b,
Consequently :

Uw[i, j] = max(B(
B a
b
[i]

)[j]) (def.)

= max(B(
B a
b
[n−i]

)[j]) (autocomplementarity of B a
b
)

= max(B(
B a
b
[n−i]

)[n− j]) (autocomplementarity of BB a
b
[n−i])

= max(B(
B a
b
[i]

)[n− j]).

Moreover, U a
b

has an extra diagonal symmetry;

Property 4. For the Christoffel word of slope a/b, we have (U a
b
)T = U a

b
.

Proof. Let w = C(ab ) and i < j, by definition: Uw[i, j] = max(B(Bw[i])[j]); we recall that: Bw[i] =
Sw[i]−min(Sw[i]) where Sw[i, j] = w[i] + . . . w[i+ j] = |w[i, j]|1. Therefore BBw[i][j] = SBw[i][j]−
min(SBw[i][j]) with SBw[i][j] = |w[j, . . . , j + i− 1](j, i)|1 = |w[j, . . . , j + i− 1]|1. While for U [j, i] =
max(B(Bw[j])[i]) we have: Bw[j] = Sw[j]−min(Sw[j]). Therefore ∀ i, j ∈ {1, . . . , n−1}, BBw[j][i] =
SBw[j][i] − min(SBw[j][i]) with SSw[j][i] = |w[i, . . . , j + i − 1][i, j]|1 = |w[j, . . . , j + i − 1]|1 and
Uw[i, j] = max(B(Bw[i])[j]) = max(B(Bw[j])[i]) = U [j, i].



After those two properties, we are able to prove that U a
b

= U b
a

.

5 More about Christoffel words

Let w be a Christoffel word of length at least 2, the standard factorization is obtained by writting
w = (w1, w2) in a unique way, where w1, w2 are two Christoffel words by [7]. The Christoffel tree
is an infinite tree whose vertices are all the standard factorizations of Christoffel words (see [5],
Section 3.2). It uses the fact that given a standard factorization (w1, w2), the pairs (w1, w1w2) and
(w1w2, w2) are also standard factorizations. Let φ0, φ1 be the two functions from A∗×A∗ into itself
defined by: φ0(w1, w2) = (w1, w1w2);φ1(w1, w2) = (w1w2, w2). We have that any Christoffel word
can be obtained in a unique way by iteration of these two functions on (0, 1). Consequently, the
Christoffel tree is defined as follows: the root is (0, 1), the Christoffel word of slope 1. Then each
node (w1, w2) has two sons: φ0(w1, w2) on the left and φ1(w1, w2) on the right. See Figure 2 for an
illustration.

(0,1)

(0,01)

(0,001)

...
...

(001,01)

...
...

(01,1)

(01,011)

...
...

(011,1)

...
...

Fig. 2: The first levels of the Christoffel tree.

We introduce and study the directive sequence of Christoffel words.

Definition 5. Let w = C(ab ) be a non-trivial Christoffel word, the directive sequence of w, denoted
∆(ab ), is the word ∆(ab ) = i1i2 · · · in ∈ A∗ such that w = (φin ◦ · · · ◦ φi2 ◦ φi1)(0, 1).

Note that a directive sequence ∆(ab ) = i1 · · · in describes the path from the root of the Christoffel
tree to the Christoffel word C(ab ) as follows : at step k, if ik = 0 then go left, otherwise, if ik = 1
then go right.

5.1 Stern-Brocot tree and continued fractions

In this section, we introduce the Stern-Brocot tree that contains all the reduced fractions a
b . It

was first introduced by a German mathematician Moritz Abraham Stern and a French clockmaker
Achille Brocot in the 19th century [8]. In order to construct recursively the Stern-Brocot tree,
we need to introduce the mediant of two fractions a

b and c
d , that is a

b ⊕
c
d = a+c

b+d . In addition
to that, we have to define the recursive sequence si, that is obtained from si−1, by completing
with the mediant of each two consecutive fractions in si−1, where s0 is given by: s0 =

(
0
1 ,

1
0

)
.



Note that, 1
0 , is considered as a normal fraction: s0 =

(
0
1 ,

1
0

)
, s1 =

(
0
1 ,

1
1 ,

1
0

)
, s2 =

(
0
1 ,

1
2 ,

1
1 ,

2
1 ,

1
0

)
,

s3 =
(
0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,

1
0

)
.

The mediants added in each new step to the sequence si are the fractions that appear on the
ith level of the Stern-Brocot tree. For example, on the third level, we have the fractions: 1

3 ,
2
3 ,

3
2 ,

3
1

that are extracted from the sequence s3. We call consecutive fractions, two fractions that belong
to the same set si and are next to each other, like 1

1 , and 2
1 in s2. Some properties about these

consecutive fractions will be given in the next section.
In order to simplify the notation, we denote a

b ⊕
c
d by a

b
c
d and a

b ⊕ . . .⊕
a
b repeated p times by (ab )p.

The Christoffel tree is isomorphic to the Stern-Brocot tree where each vertex of the Christoffel tree

of the form (u,v) is associated to the fraction |uv|1|uv|0 , see Figure 3.

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Fig. 3: The first levels of the Stern-Brocot tree.

The continued fraction of a rational number a
b ≥ 0 is the sequence of integers a

b = [a0, . . . , az],
with a0 ≥ 0; ai ≥ 1 for 1 ≤ i ≤ z and if z ≥ 2 then az ≥ 2.

a

b
= a0 +

1

a1 +
1

· · ·+ az

.

In the following part, we will explain how to pass from the continued fraction of a rational
number a/b to the Christoffel word of slope a/b. For that, we introduce the following theorem by
Henry J.S in 1876. This theorem gives an additional characterization for the Christoffel words. In
fact, he showed that the Christoffel word can be obtained by a recursive expression using the partial
denominators of the rational number.

Theorem 3. [28] Let a
b = [a0, a1 . . . , az], a word w = 0u1 is a Christoffel word of slope a

b if and
only if u01 or u10 is equal to sn+1, where sn+1 is defined recursively by: s−1 = 0, s0 = 1 and
sn+1 = sann sn−1 for all n ≥ 0.

Moreover, in 1987, Berstel introduced, in a report for LITP, the following relation between the
partial denominators of a rational number and two particular matrices based on the Theorem 2.1
in George Raney’s paper [25] in 1973, that was publuished in 1990 [3]. Using the two matrices

A =
(1 1

0 1

)
and B =

(1 0
1 1

)
, and for the particular case of the rational number a/b where a < b, we

have:



Proposition 1. [3] For a < b, we associate for the rational number a
b = [0, a1, a2, . . . , an], the

following matrix: M(ab ) = Aa1−1Ba2Aa3 . . . Can−1Dan−1, where C and D are respectively A,B or

B,A depending on the parity of n. We have: M(ab ).
(1

1

)
=
(b− a

a

)
.

Furthermore, in 1993, Borel and Laubie, followed by de Luca in 1997 then Berthé, de Luca and
Reutenauer in 2008, gave the following theorem, where they linked these two particular matrices to
the Christoffel word of slope a/b. Let the function Pal be the iterative palindromic closure function
defined recursively in [4] by Pal(ua) = (Pal(u)a)(+) and Pal(ε) = ε, where a is a letter and u a
word and (w)+ is the palindromic closure of w i.e. (w)+ = ww′ with ww′ is the shortest palindrome
having w as a prefix.

Theorem 4. [4, 6, 7] Let w be a Christoffel word of slope a/b, there exists a unique word v such
that w = 0Pal(v)1, if (w1, w2) is the standard factorization of w then we define the multiplicative

monoid morphism µ : {0, 1}∗ −→ SL2(Z) such that: µ(0) =
(1 1

0 1

)
= A and µ(1) =

(1 0
1 1

)
= B,

where: µ(v) =

(
|w1|0 |w2|0
|w1|1 |w2|1

)
.

In [3, 5, 18, 25] we can find results allowing us to write, in an explicit way, the relation between
the continued fraction of a rational number and its directive sequence as we can see in the following
theorem (see[4]), where its proof can be found in the Appendix.

Theorem 5. Let a
b = [a0, . . . , az], we have: ∆(ab ) = 1a00a11a2 ...paz−1 where p ∈ {0, 1}. The

Christoffel word of slope a/b is written: C
(
a
b

)
= 0w′1, where w′ is a palindrome and w′ =

Pal(∆(ab )).

6 Recursive construction of the second order balance matrix

Due to the isomorphism and the recursive construction of the Stern-Brocot tree and the Christoffel
tree, we can conclude that there must exist a recursive construction for the second order balance
matrix. In order to show and to prove this recursivity, we let U a

b
where a/b = [a0, . . . , az] =

[a0, a1, . . . , az−1, 1] be the second order balance matrix of the Christoffel word C
(
a
b

)
. We introduce

the following terminology for some specific rational numbers on the Stern-Brocot tree and that will
be used for the rest of the paper. See Figure 4 for an illustration.

Definition 6. Given a
b = [a0, . . . , az],

1. the top branch fraction of a
b , denoted TBF(ab ), is the fraction [a0, . . . , az−1 + 1],

2. the first reduced fraction of a
b , denoted FRF(ab ), is the fraction [a0, . . . , az−1],

3. the first extended fraction of a
b , denoted FEF(ab ), is the fraction [a0, a1, . . . , az + 1],

4. the first deviation fraction of a
b , denoted FDF(ab ), is the fraction [a0, a1, . . . , az − 1, 2],

5. the first parallel fraction of a
b , denoted FPF(ab ), is either [a0, a1, . . . , az−1 − 1, 2] if az−1 6= 1 or

[a0, a1, . . . , az−2 + 2] if az−1 = 1.
6. the second unidirectional father of a

b , denoted SUF(ab ), is either [a0, a1, . . . , az − 2] if az > 2 or
[a0, a1, . . . , az−2] if az = 2.



Note that SUF(ab ) is not defined for fractions 1
1 , 1

2 and 2
1 . Using Theorem 5 we can get the

directive sequence of each of these fractions.

Example 8. Let a
b = 3

5 = [0, 1, 1, 2], from Definition 6, we get: TBF(3/5) = 2/3, FEF(3/5) =
4/7, FDF(3/5) = 5/8, FPF(3/5) = 1/3 and SUF(3/5) = 1/1. See Figure 4 for the positions of
theses fractions in the Stern-Brocot tree.
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Fig. 4: Illustration of the specific rational numbers related to 3/5 = [0, 1, 1, 2] on the Stern-Brocot tree.
We have: TBF(3/5) = 2/3, FRF(3/5) = 1/2, FEF(3/5) = 4/7, FDF(3/5) = 5/8, FPF(3/5) = 1/3 and
SUF(3/5) = 1/1.

General form of the second order balance matrix

To construct U a
b
, we start by placing 4 rows of separation that divide the matrix into 9 blocks.

Due to the symmetries proved in Properties 3 and 4, it is sufficient to know three of these blocks
to deduce the others. These blocks are denoted α, β and γ and are represented in the matrix as
follows :

U a
b

=

 α · ·
γ β ·
· · ·

 ,

In the following section, we show that the blocks α, β, γ are described by the second order
balance matrices of simpler fractions. More precisely, α is deduced from UTBF( ab )

while β is given
by adding one to each entry of USUF( ab )

. Finally, the construction of γ depends on the position of
a
b in the Stern-Brocot tree, where the fraction is, relatively to its father, either a deviation (first
deviation fraction) or an extension (first extended fraction).

6.1 The construction of Ua
b

In this section, we start to explain how we can obtain the recursive construction of the second order
balance matrix of the Christoffel word of slope a/b = [a0, . . . , az]. Figure 6 displays the rational
numbers needed for the construction. Since U a

b
= U b

a
, we reduce the work to the first half of the

Stern-Brocot tree, that contains all the irreducible fractions with a ≤ b. Given a
b = [a0, . . . , az], we

consider separately the cases z < 2 and z ≥ 2.



The trivial cases: z ∈ {0, 1}

For z = 0, we have U 0
1

= U 1
0

= [ ] and U 1
1

= [1]. For z = 1, we have a
b = [0, a1] which implies

that a = 1 and b = a1. In this case, Remark 1, states that Bw[i] = 0b+1−i1i and from Definition 3,
we have: Uw[i, j] = max(BBw[i][j]). Hence, we consider the first quarter of the matrix Uw which is
sufficient from properties 3 and 4. Due to the diagonal symmetry, we will consider only j ≤ i where
i, j ≤ n

2 if n is even or i, j ≤ n−1
2 if n is odd.

Proposition 2. If a = 1, then for all j ≤ i and i, j ≤ n
2 we have: U a

b
[i, j] = j.

Proof. Since Bw[i] = 0b+1−i1i and Uw[i, j] = max(BBw[i][j]), from Property 6 and with j < i, we

have: BBw[i][j] = 0b−i−j+21 · · · ji−j+2 · · · 1. Therefore, Uw[i, j] = max(BBw[i][j]) = j.

We can observe that this matrix can also be constructed using a recursive form where the first
(resp. last) row and the first (resp. last) column are all 1’s and in the middle we have the matrix of
SUF( 1

b ) where its elements are increased by 1 (see Figure 5).

U 1
b

=



1 1 .. 1 1

1 1
. .
. .
. U[0,a1−2] + 1 .
. .
1 1

1 1 .. 1 1


.

Fig. 5: The general form of the matrix U 1
b
.

The general case : z ≥ 2

Now we assume that z ≥ 2, in order to lighten the presentation we define the following fractions, let:
u
v = TBF(ab ), x

y = FRF(ab ), c
d = FDF(uv ), e

f = FPF( cd ), g
h = SUF(uv ), p

q = TBF(xy ), s
t = FRF(uv ).

See Figure 6 for an illustration of their relative positions on the Stern-Brocot tree.

Lemma 3. The Christoffel words of slope a
b ,

g
h and e

f can be written as follows:

C(ab ) =
(
C(xy )

)az−1
C(uv ) =

(
C(xy )

)az
C( st ), C(xy ) = C( gh )C( st ) and C( ef ) = C( gh )C(xy ).

Proof. This is a consequence of Theorem 5. The iteration of the application of functions φ0 and φ1
provides the equalities.

Separation rows For the rest of this section, the fractions mentioned in Figure 6 are used to prove
the construction of U a

b
. In the following part we prove that separation rows allow the decomposition

of U a
b

into 9 blocks. In Definition 7, we give a characteristic for the consecutive fractions of each
sequence si, used to construct the Stern-Brocot tree.
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Fig. 6: Position of the fractions u
v

, x
y

, c
d
, e

f
, g

h
, p

q
and s

t
relatively to a

b
, for the case where az−1 ≥ 2 and z

odd. By definition, we have : a
b

= [a0 . . . , az], u
v

= [a0 . . . , az−1+1], x
y

= [a0, . . . , az−1], p
q

= [a0, . . . , az−2+1],
s
t

= [a0, . . . , az−2], e
f

= [a0, . . . , az−1 − 1, 2], c
d

= [a0, . . . , az−1, 2], g
h

= [a0, . . . , az−1 − 1]. With respect to
the Farey addition we have: u

v
= x

y
s
t

and c
d

= x
y

u
v
.

Definition 7. Let a
b and a′

b′ be two consecutive fractions of a certain sequence si, ∀i > 0. They
respect the following relation: a′b− ab′ = 1.

Property 5. Let a
b and a′

b′ be two consecutive fractions in the Stern-Brocot tree, we have:

(a′ + b′).a = a′.(a+ b)− 1.

The proof of this property is obtained by an arithmetic calculation based on Definition 7.
In the following lemma, we prove that in each U a

b
, we have at least 2 rows and columns full of 1′s.

Lemma 4. Let k = x+ y, for the rational number a
b with n = a+ b, we have:

U [i, k] = U [i, n− k] = U [k, j] = U [n− k, j] = 1, ∀ i, j ∈ {1, . . . , n− 1}.

Proof. From Property 5, we have (x+ y)a = x(a+ b)− 1, using the consecutive fractions a/b and
x/y from the Stern-Brocot tree, we get: ka = xn − 1 hence ka ≡ −1 mod n. From Lemma 2, we
have |Di| = iamodn, hence |Dk| = n− 1 and |Dn−k| = 1 since these two rows are complementary.
Therefore, the words B a

b
[k] and B a

b
[n − k] are 1-balanced; hence U [k, j] = U [n − k, j] = 1, ∀ j ∈

{1, . . . , n − 1}. Using the diagonal symmetry of U a
b
, we get: U [i, k] = U [i, n − k] = 1, ∀ i ∈

{1, . . . , n− 1}.

Remark 2. From Lemma 4, we get that the row (respectively column) k and n − k contain only
values of 1′s. Therefore, we define the separation rows to be between the rows (resp. columns)
(k; k + 1) and between the rows (resp. columns) (n − k − 1;n − k) which divide U a

b
into 9 blocks.

See Figure 7.



Let a
b

= 5
8
, the 9 blocks are represented as follows:

U 5
8

=

Top left part of U 3
5

Left central part of U 3
4

U 1
2

+ 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 1 1 1 1 2 1 1 1

1 1 1 1 1 2 2 1 1 1 1 1

1 2 1 2 1 2 2 1 2 1 2 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 1 2 2 1 2 2 1 1

1 1 2 2 1 2 2 1 2 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 2 1 2 1 2 1

1 1 1 1 1 2 2 1 1 1 1 1

1 1 1 2 1 1 1 1 2 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1




Fig. 7: The decomposition of the matrix U 5

8
into 9 blocks. We have TBF( 5

8
) = 3

5
, SUF( 5

8
) = 1

2
, FPF( 5

8
) = 3

4
,

x
y

= 2
3

and k = 5.

Now we prove that each block α, β and γ of U a
b

can be decomposed in some smaller second
order balanced matrices. In fact, to construct the matrix U a

b
we first place the rows of separation.

This shows that U a
b

is composed of 9 blocks where the three blocks αk×k , β(n−2k−1)×(n−2k−1) and
γ(n−2k−1)×k are constructed while the others are obtained by symmetry.
In the following part, we construct respectively each of the blocks α, γ and β to get U a

b
.

α-block: Recall that z ≥ 2 and we let for the rest of this section z to be an odd number where the
even case is obtained in a similar way. Let s

t ,
g
h and x

y be the fractions defined at the beginning of

Section 6.1. The α-block is formed of k rows and columns where k = x+ y = |FRF(ab )|.

Lemma 5. The α-block of U a
b

is exactly the first k − 1 rows and columns of the matrix Uu
v

where
u
v = TBF(ab ).

Proof. At the beginning, we show that the first k − 1 rows of B a
b

are exactly the concatenation of
az − 1 times of the matrix B x

y
and the k − 1 first rows of the matrix Bu

v
. Then we show that the

set of factors of these rows of length shorter than k is exactly the same for the rows of Bu
v

.

By Lemma 3 and since z is odd, we have: C(ab ) = C(xy )az−1C(uv ) and C(uv ) = C(xy )C( st ).
Therefore, the k first columns of B a

b
are given by B x

y
. Indeed, this part of B a

b
is constructed due to

factors of lengths less or equal than k where only the first k positions are considered. This means
that all these factors are included in the prefix of length 2k of C

(
a
b

)
which is exactly C(xy )2. The

same argument holds for each B a
b
[i, j], for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n − (u + v), which forms

the az − 1 blocks of B x
y

. Note that to obtain the last block of B x
y

, we use the fact that C
(
u
v

)
has C(xy ) as a prefix. For the last block, we observe that the entries of B a

b
[i, j] for 1 ≤ i ≤ k − 1

and n− (u+ v) + 1 ≤ j ≤ n, are exactly the same as in Bu
v

since, again, we only consider factors



up to length k and both words C
(
a
b

)
and C

(
u
v

)
start with C(xy ) of length k. Hence we have:

B a
b
[i] = B x

y
[i]az−1 ·Bu

v
[i], for all 1 ≤ i ≤ k−1. Finally, we can write that Lj(C(xy )ω) ⊆ Lj

(
C(uv )ω

)
,

for j ≤ k − 1 since C(xy ) ends with C
(
s
t

)
and C

(
u
v

)
= C(xy )C

(
s
t

)
. Which implies

Lj

(
Bωa
b
[i]
)

= Lj

(
Bωu
v

[i]
)
, ∀ 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − 1.

γ-block: The second block of U a
b

is the γ-block of dimension (n−2k−1)×k. This block is located

between the k + 1 and the (n − k − 1)th rows and bounded by the row of separation at the kth

column. This part of the second order balance matrix admits a recursive form. If we consider the
concatenation of matrices as a vertical stacking, then γ(ab ) is given by

γ
(a
b

)
=


γ
( c
d

) [
γ
(u
v

)
γ
( c
d

)]az−2
if az ≥ 3

γ

(
e

f

)
if az = 2

(2)

We mentioned that we are considering the case where z ≥ 2 and with z an odd value. In fact,
the parity of z determines if a/b is a right or left child. Furthermore, it helps us to know the value
of α, where α is the value needed to obtain D(a, b).

Lemma 6. Let a
b = [a0, . . . , az], and FRF(ab ) = x

y with x+ y = k.

The set D(a, b) = {iα+ 1 mod n|1 ≤ i ≤ a} where n = a+ b has:{
α = k, if z is even
α = n− k, if z is odd.

The proof can be found in the Appendix.
In order to prove the construction of the γ−block, we need to introduce some additional prop-

erties of the balance matrix B a
b

used in the technical proof of the γ−block.

Property 6. Let w = 0x1y such that x, y > 0. For i ≤ x and i ≤ y, we have: Bw[i] = 0x−i+112 · · · (i−
2)(i− 1) · iy−i+1 · (i− 1)(i− 2) · · · 21.

Proof. Let w = 0x1y, for i = 2, Sw[i, p] = |wω[p, p + i − 1]|1 for all 1 ≤ p ≤ x + y, therefore
Sw[2] = 0x−112y−11 = 0x−2+112y−2+11 and since x−1 > 0 then min(Sw[2]) = 0 and Bw[2] = Sw[2].
Suppose this is true for i ≤ x, hence Bw[i] = 0x−i+112 . . . iy−i+1 . . . 21 prove it true for i + 1 such
that i+1 ≤ x. We have Sw[i+1, p] = 0 for all 1 ≤ p ≤ x−i, for p = x−i+1, we have Sw[i+1, p] = 1
and for x− i + 1 ≤ p ≤ y − x− i, we get Sw[i + 1, p] = i + 1. The values decrease until p = x + y
and we have Sw[i+ 1, x+ y] = 1. Since i+ 1 ≤ x, then x− i ≥ 1 and minSw[i+ 1] = 0, therefore
Bw[i] = 0x−i+112 . . . iy−i+1 . . . 21.

Lemma 7. Let a
b = [a0, . . . , az] and x

y = FRF(ab ) such that |C(xy )| = x+ y = k.{
B a
b
[k] = 0α10n−α−1 ; B a

b
[2k] = 0n−2k10k−110k−1if z is odd,

B a
b
[n− k] = 0α10n−α−1 ; B a

b
[n− 2k] = 0n−2k10k−110k−1if z is even.

(3)



Proof. We prove the case where z is odd and the second case is obtained in a similar way. We
let p1, p2 be two palindromes such that: C( st ) = 0p11, C( gh ) = 0p21 where C(xy ) = C( gh )C( st );

C(ab ) = (C(xy ))az−1C(uv ) and C(uv ) = C(xy )C( st ). The central word of C(xy ) is a palindrome then:
p210p1 = p101p2. By the definition of the balance matrix, we have ∀ 1 ≤ i ≤ n− 1 and ∀ 1 ≤ j ≤
n B a

b
[k, j] = S a

b
[k, j]−min(S a

b
[k]) = |C(ab )[j . . . k + j − 1]|1 −min(S a

b
[k]). Summing up all this we

get:

C(
a

b
) = C(

x

y
)az−1 · C(

x

y
)C(

s

t
) = C(

x

y
)az−1 · 0p210p110p11 = C(

x

y
)az−1 · 0p101p210p11.

We know that k = |p1| + |p2| + 4 and |C(xy )|1 = |p1|1 + |p2|1 + 2 = x. Therefore all the elements

u ∈ Lk(C(ab )ω) have |u|1 = |p1|1+|p2|1+2 except u′ = 1p210p11 which is of length k and at position
n − k but has |u′|1 = x + 1. Hence by subtracting by min(S a

b
[k]), we get B a

b
[k] = 0n−k10k−1. By

lemma 6, we know that since z is odd, α = n− k, which ends the proof.
Same reasoning is used to determine the row B a

b
[2k], where 2k = 2|C(xy )| = 2|p1|+ 2|p2|+ 8.

The following lemma states the recursive construction of the γ−block in a formal way.

Lemma 8. The γ−block is obtained depending on the position of the fraction in the Stern-Brocot
tree.

– If az ≥ 3 then γ
(
a
b

)
is obtained by stacking vertically γ( cd ) over az−2 copies of γ(uv ) and γ( cd ).

– Otherwise, if az = 2, then γ
(
a
b

)
is given by the extension of γ( ef ) to the k-th column of U e

f
.

where u
v = TBF(ab ) ; c

d = FDF(uv ) ; e
f = FPF(ab ).

The proof can be found in the Appendix.

β-block The β−block is the center of U a
b
, the last block needed to complete the construction of

the second order balance matrix. This block is of dimension (n− 2k− 1)× (n− 2k− 1) and located
between the rows (respectively columns) k and n− k.

Lemma 9. The β−block of U a
b

is exactly the second order balance matrix of the fraction ρ
θ =

SUF(ab ) in the Stern-Brocot tree where its elements are increased by 1.

The proof can be found in the Appendix.

7 Perspectives

In the introduction, we stated that there were connections between the second order of balance
and the Fraenkel conjecture, and we mentioned the importance of the second order of balance to
construct balanced words on a k−letters alphabet. Hence, we have to show some hints on how
to use the second order balance matrix Uw to have new information on the synchronisation of
words. Of course the Fraenkel conjecture is far from being solved because of its own complexity
nevertheless we have built a new tool to synchronize balanced words by considering synchronization
of blocs instead of letters. The following example is based on the word FR3 = 1213121 on a three
letter alphabet, which is obtained from the synchronization of the 3 Christoffel words of slope 1/6
associated with the word C3 = ∗ ∗ ∗3 ∗ ∗∗, of slope 2/5 associated with the word C2 = ∗2 ∗ ∗ ∗ 2∗



U 1
6

=


1 1 1 1 1 1
1 2 2 2 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 2 2 2 1
1 1 1 1 1 1

, U 2
5

=


1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1

 and U 4
3

= U 3
4

=


1 1 1 1 1 1
1 1 1 1 1 1
1 1 2 2 1 1
1 1 2 2 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 .

Fig. 8: The three matrices U 1
6
, U 2

5
and U 3

4
used for the synchronization of the triplet (1, 2, 4) mod 7.

and of slope 3/4 associated with the word C1 = 1 ∗ 1 ∗ 1 ∗ 1. Remark that in each position we have
only one value and the other symbols are stars. We are able to read this synchronization on rows
of matrices in Figure 8:

If we name M a
b

the set of indices of the rows with a maximal values in U a
b

and m a
b

the set of
indices of the rows with minimal values in U a

b
(which are non previously chosen rows), we could

extract the following set of indices: M 1
6

= {3, 4} and m 1
6

= {1, 6}; M 2
5

= {2, 5} and m 2
5

= {3, 4};
M 3

4
= {3, 4} and m 3

4
= {2, 5}. We can observe that starting with the elements of the set m 3

4
, if we

double the values and take modulo 7, we get the elements of m 2
5
. The same note can be also given

for the sets m 2
5

and m 1
6
. 2.2 = 4; 5.2 = 10 ≡7 3, where {3, 4} = m 2

5
. 4.2 = 8 ≡7 1; 3.2 = 6, where

{1, 6} = m 1
6
. Except for the rows 1 and 6, we can see the synchronization between the sets m a

b

and M a
b
, more precisely, if a row appears as a minimum for the set m it appears as a maximum

for the set M , which allows us to read all information for the synchronization in the second order
balance matrix. This will be a keypoint for our next research, in order to study the synchronization
of Christoffel words over a k−letters alphabet and to try to tackle the Fraenkel’s conjecture.

In addition, many research problems are still open in this study. For example, how to extend
the second order balance matrix construction for a binary word that are not Christoffel words?

We could also investigate the Stern-Brocot tree in order to find the structure of infinite paths
that minimize the second order balance and find a combinatorial construction of these paths.

To end the perspectives, we could notice that considering the balance matrix is equivalent to
compute balance property of a given word. This computation appears in another context in order to
compute Parikh vectors that are k−dimensional vectors defined for a finite word w on a k−letters
alphabet. The ith coordinate of this vector gives the number of occurrences of the letter i in the word
w. The notion of relative Parikh vectors is introduced by Turek, in [?,?], in order to understand the
structure of words. Nevertheless, the computation of the second order balance matrix using Parikh
vectors is not straightforward and will be considered in a future article.
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