
ar
X

iv
:1

91
1.

12
67

2v
1 

 [
cs

.S
C

] 
 2

8 
N

ov
 2

01
9

Improved cross-validation for classifiers that

make algorithmic choices to minimise runtime

without compromising output correctness

Dorian Florescu and Matthew England

Faculty of Engineering, Environment and Computing,
Coventry University, Coventry, CV1 5FB, UK

{Dorian.Florescu, Matthew.England}@coventry.ac.uk

Abstract. Our topic is the use of machine learning to improve soft-
ware by making choices which do not compromise the correctness of the
output, but do affect the time taken to produce such output. We are
particularly concerned with computer algebra systems (CASs), and in
particular, our experiments are for selecting the variable ordering to use
when performing a cylindrical algebraic decomposition of n-dimensional
real space with respect to the signs of a set of polynomials.
In our prior work we explored the different ML models that could be
used, and how to identify suitable features of the input polynomials. In
the present paper we both repeat our prior experiments on problems
which have more variables (and thus exponentially more possible or-
derings), and examine the metric which our ML classifiers targets. The
natural metric is computational runtime, with classifiers trained to pick
the ordering which minimises this. However, this leads to the situation
were models do not distinguish between any of the non-optimal orderings,
whose runtimes may still vary dramatically. In this paper we investigate
a modification to the cross-validation algorithms of the classifiers so that
they do distinguish these cases, leading to improved results.

Keywords: machine learning; cross-validation; computer algebra; sym-
bolic computation; cylindrical algebraic decomposition

1 Introduction

1.1 Background and main thesis

Machine Learning (ML), that is statistical techniques to give computer systems
the ability to learn rules from data, is a topic that has found great success in a
diverse range of fields over recent years. ML is most attractive when the under-
lying functional relationship to be modelled is complex or not well understood.
With regards to the creation of software itself, while ML has a history of use for
testing and security analysis [26] it is less often used in the actual algorithms.
On the surface, this would be especially true for software that prizes mathemat-
ical correctness, such as computer algebra systems (CASs). Here, a thorough
understanding of the underlying relationships would seem to be a pre-requisite.

http://arxiv.org/abs/1911.12672v1


2 D. Florescu and M. England

However, CAS developers would acknowledge that their software actually
comes with a range of options that, while having no effect on the correctness of
the end result, can have a great effect on how long it takes to produce the result
and exactly what form that result takes. These choices range from the low level
(in what order to perform a search that may terminate early) to the high (which
of a set of competing exact algorithms to use for this problem instance).

A well-known example is the choice of monomial ordering for a Gröbner Basis.
This choice is actually quite abnormal in that there has been much study devoted
to it and there are some clear pieces of advice to follow (e.g. that degrevlex

ordering is the easiest to compute, and that if a lex ordering is needed it would
be best to first compute a degrevlex basis and then convert). A better example
of the choices we consider would be the underlying variable order that is required
to define any monomial ordering, for which there exists no such clear advice.

In practice these less understood choices are usually either left entirely to
the user, taken by human-made heuristics based on some experimentation (e.g.
[19]), or made according to magic constants where crossing a single threshold
changes system behaviour [11]. Our main thesis is that many of these decisions
could be improved by allowing ML algorithms to analyse the data.

1.2 Outline of the paper and contribution

Our experiments concern variable orderings for another prominent symbolic com-
putation algorithm: Cylindrical Algebraic Decomposition (CAD). CAD is an ex-
pensive procedure, with the choice of ordering affecting not only computation
time but often the tractability of even considering a problem. We introduce the
necessary background on CAD and its orderings in Section 2. We describe our
prior work using ML to make this choice [29], [28], [23], [25] in Section 3 which
includes experimenting with a range of ML models, and developing techniques to
generate suitable features from the input data. This prior work was all conducted
on a large dataset of 3-variable problems (a choice from 6 orderings).

The new contributions of the present paper are two-fold. First, we have ap-
plied our prior methodology to a dataset of 4-variable problems (choice from 24
orderings) and we report on how it handled this increased complexity. Secondly,
we examine and improve the training goal of our ML classifiers. The natural
metric for this problem is runtime, and our old classifiers are trained to pick
the ordering which minimises this for a given CAD input. However, this meant
our training did not distinguish between any of the non-optimal orderings even
though the difference between these could be huge. In Section 4 we report on a
new cross-validation approach for our classifiers which aims to make them aware
of these different shades of wrong and thus make choices which reduce the overall
runtime even if the number of problems where the classifiers pick the absolute
best runtime is unchanged.

In Section 5 and 6 we describe the methodology and results respectively
for our new experiments on choosing the variable ordering for 4-variable CAD
problems, both with and without the new cross-validation approach. We also
compare against the best known human-made heuristics.



Improved cross-validation for classifiers that make algorithmic choices 3

2 Background on variable ordering for CAD

2.1 Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered Rn

space into cells arranged cylindrically: the projections of any pair of cells with
respect to the variable ordering are either equal or disjoint. I.e. the projections
all lie within cylinders over the cells of an induced CAD of the lower dimensional
space. All these cells are (semi)-algebraic meaning each can be described with a
finite sequence of polynomial constraints.

A CAD is usually produced to be truth-invariant for a logical formula, mean-
ing the formula is either true or false on each cell. Such a decomposition can then
be used to analyse the formula, and for example, perform Quantifier Elimination
(QE) over the reals. I.e. given a quantified Tarski formula in prenex normal form
we can find an equivalent quantifier free formula over the reals by building a CAD
for the quantifier-free part of the formula, querying a finite number of sample
points (one from each cell), and then using the corresponding cell descriptions.
For example, QE could transform ∃x, ax2 + bx+ c = 0∧ a 6= 0 to the equivalent
unquantified statement b2−4ac ≥ 0 by building a CAD of (x, a, b, c). In practice,
the quantifier free equivalent would come as the conjunction of several parts (one
from each cell) which logically simplify to the stated result.

CAD was introduced by Collins in 1975 [16] and works relative to a set of
polynomials. Collins’ CAD produces a decomposition so that each polynomial
has constant sign on each cell (thus truth-invariant for any formula built with
those polynomials). The algorithm first projects the polynomials into smaller
and smaller dimensions; and then uses these to lift − to incrementally build
decompositions of larger and larger spaces according to the polynomials at that
level. There have been a great many developments in the theory and imple-
mentation of CAD since Collins’ original work which we do not describe here.
The collection [12] summarises the work up to the mid-90s while the second au-
thor’s journal articles [5] [21] attempt summaries of CAD progress since in their
introduction and background sections. CAD is the backbone of all QE imple-
mentations as it is the only implemented complete procedure for the problem.
QE has numerous applications throughout science and engineering1 [38] which
would in turn benefit from faster CAD. Our work also speeds up independent
applications of CAD, such as reasoning with multi-valued functions [18], motion
planning [40], and identifying multistationarity in biological networks [3], [4].

2.2 Variable ordering

The definition of cylindricity and both stages of the CAD algorithm are relative
to an ordering of the variables. For example, given polynomials in variables or-
dered as xn ≻ xn−1 ≻ . . . ,≻ x2 ≻ x1 we first project away xn and so on until we
are left with polynomials univariate in x1. We then start lifting by decomposing

1 Recently even economics too [35], [36].



4 D. Florescu and M. England

the x1−axis, and then the (x1, x2)−plane and so so on. The cylindricity condi-
tion refers to projections of cells in Rn onto a space (x1, . . . , xm) where m < n.
As noted above there have been numerous advances to CAD since its inception
but the need for a fixed variable ordering remains.

Depending on the application, the variable ordering may be determined, con-
strained, or free. QE, requires that quantified variables are eliminated first and
that variables are eliminated in the order in which they are quantified. However,
variables in blocks of the same quantifier (and the free variables) can be swapped,
so there is partial freedom. In the example discussed in Section 2.1 we may use
any variable ordering that projects the quantified variable x first to perform the
QE and discover the discriminant. A CAD for the quadratic polynomial under
ordering a ≺ b ≺ c has only 27 cells, but we need 115 for the reverse ordering.

This choice of variable ordering can have a great effect on the time and
memory use of CAD, and the number of cells in the output (how course or fine the
decomposition is). In fact, Brown and Davenport presented a class of problems
in which one variable ordering gave output of double exponential complexity in
the number of variables and another output of a constant size [10].

Heuristics have been developed to choose a variable ordering, with Dolzmann
et al. [19] giving the best known study. After analysing a variety of metrics they
proposed a heuristic, sotd, which constructs the full set of projection polyno-
mials for each permitted ordering and selects the ordering whose corresponding
set has the lowest sum of total degrees for each of the monomials in each of the
polynomials. The second author demonstrated examples for which that heuristic
could be misled in [6]; and then later showed that tailoring to an implementation
could improve performance [22]. These heuristics all involved potentially costly
projection operations on the input polynomials.

Another human-made heuristic was proposed by Brown in his ISSAC 2004
tutorial notes [9]. This chooses a variable ordering according to the following
criteria, starting with the first and breaking ties with successive ones.

1) Eliminate a variable first if it appears with the lowest overall individual degree
in the input.

2) For each variable calculate the maximum total degree (i.e. sum of the indi-
vidual degrees) for the set of terms in the input in which it occurs. Eliminate
first the variable for which this is lowest.

3) Eliminate a variable first if there is a smaller number of terms in the input
which contain the variable.

The Brown heuristic is far cheaper than the sotd heuristic (because the latter
performs projections before measuring degrees). Surprisingly, our experiments
on CAD problems in 3-variables all suggest that the Brown heuristic makes
better choices than sotd (even before one considers the time taken to run the
heuristic itself). This counter-intuitive finding does not generalise into our 4-
variable problem set, as discussed later.



Improved cross-validation for classifiers that make algorithmic choices 5

3 Prior ML work on this problem

3.1 Results from CICM 2014

The first application of ML for choosing a CAD variable ordering was [29] which
used a support vector machine to select which of three human-made heuristics to
follow. The SVM considered 11 simple algebraic features of the input polynomials
(mostly different measures of degree and variable occurrence). The experiments
were on 3-variable CAD problems and although the Brown heuristic was found to
make the best choices on average, the experiments identified substantial subsets
of examples for which each of the three heuristics outperformed the others. The
key conclusion was that the machine learned choice did significantly better than
any one heuristic overall.

3.2 Results from CICM 2019

The present authors revisited these experiments earlier this year in [23]. We used
the same dataset but this time ML was used to predict directly the variable
ordering for CAD, rather than choosing a heuristic. The motivation for picking
a heuristic in [29] was that if the methodology were applied to problems with
more variables it would still mean making a choice from 3 possibilities rather
than an exponentially growing number. However, upon investigation there were
many problems where none of the human-made heuristics made good choices
and so savings could be made by considering all possible orderings2.

In [23] we also considered a more diverse selection of ML methods than
[29]. We experimented with four common ML classifiers: K−Nearest Neighbours
(KNN); Multi-Layer Perceptron (MLP); Decision Tree (DT); and Support Vector
Machine (SVM) with RBF kernel, all using the same set of 11 features from [29].

The results showed that all three of the new models performed better sub-
stantially better than the SVM (the only classifier to be tried before); and that
all four classifiers outperformed the human-made heuristics.

3.3 Results from SC-Square 2019

We next considered how to extract further information from the input data. The
11 features used in [29], [23] were inspired by Brown’s heuristic [9] (e.g. measures
of variable degree and frequency of occurrence). In particular, they can all be
cheaply extracted from polynomials.

In [25] a new feature generation procedure was presented, based on the obser-
vation that the original features can be formalised mathematically using a small

2 Of course, this methodology will have to be changed to deal with higher numbers
of variables but since CAD is rarely tractable with more than 5 variables this is
not a particularly pressing concern. We note that there are several meta-algorithms
that may be applicable to sample the possible ordering without evaluating them all.
For example, a Monte Carlo tree searched was used in [33] to sample the possible
multivariate Horner schemes and pick an optimal one in the CAS FORM.



6 D. Florescu and M. England

number of basic functions (average, sign, maximum) evaluated on the degrees of
the variables in either one polynomial or the whole system. Considering all pos-
sible combinations of these functions led to 78 useful and independent features
for our 3-variable dataset. The experiments were repeated with these, with the
results showing that all four ML classifiers improved their predictions.

Using these new features the choices of the best performing classifier allowed
CAD to solve all problems in the testing set with a runtime only 6% more than
the best possible (i.e. the time taken if the optimal ordering were used for every
problem). Using only the original features, the choices of the best ML classifier
led to 14% more than the minimum runtime. Following the choices of Brown’s
heuristic led to runtimes 27% more than the minimum.

3.4 Related work on ML for mathematical software

The work described above is the only published work on ML for choosing a CAD
variable ordering. There are only a handful of other examples of ML within CASs:
[27], [28] on the question of whether to precondition CAD with Gröbner Bases;
[31] on deciding the order of sub-formulae solving for a QE procedure; and [33] on
choosing a multivariate Horner scheme. Other areas of mathematical software
have made more use of ML. For example, in the mathematical logic commu-
nity the ML-selected portfolio SAT solver SATZilla [41] is well-known, while
more recently MapleSAT views solver branching as an optimisation problem
to be tackled with ML [34]. There are also several examples of ML within the
automated reasoning community (see e.g. [39], [32], [8]). A survey on ML for
mathematical software was presented at ICMS 2018 [20].

4 New cross-validation based on computing times

4.1 Motivation

In all of the authors previous ML experiments for CAD [29], [23], [25], the models
were optimised simply to predict which of the possible variable orderings leads
to the smallest computing time for CAD. This is not an ideal approach:

– First, runtimes for CAD, like all software, will contain a degree of noise from
various hardware and software factors. While it is common for a given CAD
problem to have a wide range of possible runtimes depending on the ordering,
that does not mean that all orderings give runtimes distinct from the others.
The runtimes commonly appear in clusters. Thus it is often the case that the
smallest runtime be only slightly lower than the second smallest, and that
difference could well be down to noise. Thus when training to target only
the very quickest runtime we risk exaggerating the effects of such noise.

– Second, during training, when a model makes an incorrect prediction this
could mean selecting an ordering that produces a runtime very close to the
optimal or another that is significantly larger. The training would not dis-
tinguish between these cases − there is no distinction between picking an



Improved cross-validation for classifiers that make algorithmic choices 7

“almost good” ordering and a “very bad” ordering. However, from the point
of view of a user judging these selections there is a big difference!

One of the traditional metrics used to evaluate an ML classifier is accuracy,
defined as the number of test examples for which the classifier makes the correct
choice. In our context, correct means picking the optimal variable ordering from
the n! possibilities. We recognised that for our application this definition of
accuracy is not sufficient to judge the classifiers and so in our prior work we
also presented the total CAD runtime for the testing set when using the variable
orderings of a classifier (which we referenced in the summary above).

The anonymous referees of our earlier papers commented that perhaps ac-
curacy could be redefined into something more appropriate for our application.
For example, judge a classifier as being correct for a problem instance if it picks
an ordering which produces a runtime within x% of the minimum runtime that
can be achieved for that instance3. This led us to consider whether the training
algorithms could be adapted to take account of this more nuanced definition of
accuracy. We decided to introduce this in the stage of the methodology where
cross-validation is used for hyperparameter selection: a single technique that is
used for all of the different ML classifiers we work with.

4.2 Traditional ML cross-validation

We describe first the typical procedure of cross-validation used when preparing
a ML classifier which sets the parameters and hyperparameters of a model.

The parameters are variables that can be fine-tuned so that the prediction
error reaches a local or global minimum in the parameter space. For example,
the weights in an artificial neural network or the support vectors in an SVM.
The hyperparameters are model configurations selected before training. They are
often specified by the practitioner based on experience or a heuristic, e.g. the
number of layers in a neural network or the value of k in a k-nearest neighbour
model. The connection between the hyperparameters and the model prediction
is more complex, and thus, typically, these are tuned using grid search in the
hyperparameter space to minimise the prediction error.

To prevent the situation where the model returns poor results on new datasets
not used in training, also known as overfitting, the hyperparameters and param-
eters are tuned on different datasets. The typical approach is cross-validation.

In G-fold cross-validation (see for example the introduction of [1]), the data
is split into G groups of equal size M :

D1 =
{

f (k1

1
), . . . ,f (kM

1
)
}

... (1)

DG =
{

f (k1

G), . . . ,f (kM
G )
}

,

3 In Section 5 we use x = 20 but we are still debating the most appropriate value.



8 D. Florescu and M. England

where each group entry is a vector of features for a problem instance:

f (km
g ) =

[

f
(km

g )

1 , . . . , f
(km

g )
nf

]

, g = 1, . . . , G, m = 1, . . . ,M.

Each entry in such a vector is a scalar number and nf denotes the number of
features we derive for each instance. See [25] for details of the features we use
and how they are generated from the polynomials.

Let c(k
m
g ) denote the target class corresponding to data point f (km

g ). An ML
classifier with parameters θ is modelled as a function Mθ : Rnf → {1, 2, . . . , nc},
where nc denotes the number of classes. In our context the number of classes is
the number of CAD variable orderings acceptable for the underlying application.

Typically, the classifier also depends on a number of hyperparameters that
can each take a finite number of values. Here, we will denote by H the number of
all possible hyperparameter combinations, such that Mθ

h, h = 1, . . . , H, denotes
the classifier with parameters θ and hyperparameters defined by index h. The

typical cross-validation procedure trains the parameters θ of classifiers
{

Mθ

h

}H

h=1
on each combination of G− 1 data groups in (1), adding up to G ·H models.

Let ĉ
(km

g )

h denote M
θg

h

(

f (km
g )
)

, the class prediction of a classifier whose pa-

rameters were trained on the dataset D1 ∪ · · · ∪ Dg−1 ∪ Dg+1 ∪ · · · ∪ DG. Then
the optimal hopt is computed by maximising the following quantity:

hopt = argmax
h

(

1

G

G
∑

g=1

scoregh

)

, (2)

where scoregh = score
(

ĉ
(km

g )

h , c(k
m
g )
)

, and score(·, ·) denotes the F1-score of group

G for the model prediction [15]. In other words, the typical cross-validation
procedure identifies the hyperparameters that maximise the performance of the
model at predicting the very best ordering. I.e. it does not take into account the
actual computing time of the prediction − just whether it was the quickest.

4.3 Adapted ML cross-validation

Our change to the cross-validation procedure is to instead calculate hopt as

hopt = argmax
h

(

1

G

G
∑

g=1

−ctimegh

)

, (3)

where ctimegh = 1
M

∑

m ctime
(

kmg , ĉ(k
m
g )
)

, and ctime
(

kmg , ĉ(k
m
g )
)

denotes the

recorded time for computing CAD on data point f (km
g ) using the variable or-

dering given by class prediction ĉ(k
m
g ). By evaluating the computing time for all

data points, this cross-validation method penalises the variable orderings leading
to very large computing times, but does not penalise the ones close to the opti-
mum. Thus we do not expect the change to affect how often a classifier chooses
the optimal ordering, but it should improve the choices made in cases where the
optimum is missed.



Improved cross-validation for classifiers that make algorithmic choices 9

5 ML experiment methodology

We describe a ML experiment to choose the variable ordering for CAD. The
methodology used is similar to that of our recent paper [25] except that (a) we
use a dataset of 4-variable problems instead of 3-variable ones; and (b) we ran
the classifiers with both the original and the adapted cross-validation procedure.

5.1 Problem set

We are working with the nlsat dataset4 produced to evaluate the work in [30],
thus the problems are all fully existentially quantified. Although there are CAD
algorithms that reduce what is being computed based on the quantification struc-
ture (e.g. Partial CAD [17]), the conclusions we draw are likely to generalise.

We selected the 2080 problems with 4 variables, meaning each has a choice of
24 different variable orderings. We extracted only the polynomials involved, and
randomly divided into two datasets for training (1546) and testing (534). Only
the former is used to tune the ML model parameters and hyperparameters.

5.2 Software

We work with the CAD routine CylindricalAlgebraicDecompose: part of the
RegularChains Library for Maple. It builds decompositions first of Cn before
refining to a CAD of Rn [14], [13], [2]. We ran the code in Maple 2018 but used an
updated version of the RegularChains Library (http://www.regularchains.org).
Brown’s heuristic and the features for ML were coded in the sympy package v1.3
for Python 2.7. The sotd heuristic was implemented in Maple as part of the
ProjectionCAD package [24]. Training and evaluation of the ML models was
done using the scikit-learn package [37] v0.20.2 for Python 2.7. In order to
implement our adapted cross-validation procedure we had to rewrite a number
of the standard commands within the package to both use the redefined hopt in
(3), and to access the data it requires during the cross-validation.

5.3 Timings

Each individual CAD was constructed by a Maple script called separately from
Python (to avoid any Maple caching of results). The target variable ordering
for ML was defined as the one that minimises the computing time for a given
problem. All CAD function calls included a time limit. For the training dataset
an initial time limit of 16 s was used, which was doubled if all orderings timed out
(a target variable ordering could be assigned for all problems using time limits
no bigger than 32 s). The problems in the testing dataset were all processed with
a single larger time limit of 64 s for all orderings, with any problems that timed
out having their runtime recorded as 64s.

4 Freely available from http://cs.nyu.edu/∼dejan/nonlinear/

http://www.regularchains.org
http://cs.nyu.edu/~dejan/nonlinear/


10 D. Florescu and M. England

5.4 Computing the features

We computed algorithmically the set of features for 4 variables {f (i)}
nf

i=1 where
nf = 1440, using the procedure introduced in [25].

Given the set of problems {Pr1, . . . ,PrN}, N = 1546, some of the features
f (i) turn out to be constant, i.e. f (i)(Pr1) = f (i)(Pr2) = · · · = f (i)(PrN ). Such
features will have no benefit for ML and are removed. Further, other features
may be repetitive, i.e. f (i)(Prn) = f (j)(Prn), ∀n = 1, . . . , N, and are merged
into one single feature. After this step, we are left with 105 features.

5.5 ML models

We choose commonly used deterministic ML models for this experiment (for
details on the methods see e.g. the textbook [1]).

– The K−Nearest Neighbours (KNN) classifier [1, §2.5].
– The Decision Tree (DT) classifier [1, §14.4].
– The Multi-Layer Perceptron (MLP) classifier [1, §2.5].
– The Support Vector Machine (SVM) classifier with Radial Basis Function

(RBF) kernel [1, §6.3].

We fixed the RBF kernel for SVM as it was found to produce better results than
other basis functions for a similar problem of learning from algebraic feastures
in [7], and including basis choice in cross-validation creates a much larger search
space.

Each model was trained using grid search 3-fold cross-validation, i.e. the set
was randomly divided into 3 and each possible combination of 2 parts was used to
tune the model parameters, leaving the last part for fitting the hyperparameters
with cross-validation, by optimising the average F-score. Grid searches were
performed for an initially large range for each hyperparameter; then gradually
decreased to home into optimal values. The optimal hyperparameters selected
during cross-validation are in Table 1.

5.6 Evaluating the ML models and human-made heuristics

The ML models will be compared on two metrics: Accuracy, defined as the
percentage of problems where a model’s predicted variable ordering led to a
computing time closer than 20% of the time it took the optimal ordering; and
Time defined as the total time taken to evaluate all problems in the test set
using that model’s predictions for variable ordering. We note that Accuracy is
defined differently in our prior work [23], [25] where we measured only how often
a heuristic picked the very best ordering.

We will also test the two best-known human constructed heuristics [9], [19]
described in Section 2.2. Unlike the ML models, these can end up predicting
several variable orderings (when they cannot discriminate). In practice if this
were to happen the heuristic would select one randomly (or perhaps lexico-
graphically), however that final pick is not meaningful. To accommodate this we
evaluate these heuristics as follows:



Improved cross-validation for classifiers that make algorithmic choices 11

Table 1. The ML hyperparameters optimised on the training dataset using the stan-
dard cross-validation (CV) routine and the new CV routine.

Model Hyperparameter Value (standard CV) Value (new CV)

Decision Tree Criterion Entropy Gini impurity
Maximum tree depth 6 14

K-Nearest Train instances weighting Inversely proportional Inversely proportional
Neighbours to distance to distance

Algorithm Ball Tree Ball Tree
Number of neighbours 13 14

SVM Regularization para. C 2.41 1.66
Basis para. γ 0.0097 0.0097

Multi-Layer Hidden layer size 18 17
Perceptron Activation function Hyperbolic Tangent Identity

Regularization para. α 1 · 10−4 1 · 10−4

– For each problem, the prediction accuracy of such a heuristic is judged to
be the the percentage of its predicted variable orderings that are also target
orderings (i.e. within 20% of the minimum). The average of this percentage
over all problems in the testing dataset represents the prediction accuracy.

– Similarly, the computing time for such methods is assessed as the average
computing time over all predicted orderings, and it is this that is summed
up for all problems in the testing dataset.

6 Experimental Results

The results are presented in Table 2. Each ML model appears twice in the top
table via its acronym with each of the following appended:

−O: for one trained with the original (and typical) ML cross-validation method
based on (2) as was used in our prior work [23], [25].

−N: for one trained by the new cross-validation approach described in Section
4.3 which is based on computing time as in (3).

The bottom table details the two human-constructed heuristics along with
the outcome of a random choice between the 24 orderings. We might expect a
random choice to be correct once in 24 times of the time but it is higher as for
some problems there were multiple variable orderings with equally fast timings.

The minimum total computing time, achieved if we select an optimal ordering
for every problem, is 2, 177s. This is what would be achieved by the Virtual Best
Heuristic. Choosing at random would take 8, 291s, almost 4 times as much. The
maximum time, if we selected the worst ordering for every problem (the Virtual

Worst Heuristic), is 22, 735s. The Decision Tree model trained with the new
cross validation achieved the shortest time of all with 3, 627s, 67% more than
the minimal possible.

The recorded time taken by each model to make a prediction, which is in-
cluded in the timings reported in Table 2, varied greatly between ML and the



12 D. Florescu and M. England

heuristics. The prediction time for the heuristics was 286 s for sotd and 23 s for
Brown. In contrast, the total time taken by the ML to make predictions was less
than one second for all models.

6.1 Results of new cross-validation method

For each ML model the performance when trained with the new cross-validation
was better (measured using either of our metrics) than when trained with the
original procedure. The scale of the improvement varied: the timings of the
decision tree reduced by 9.8% but those of the KNN classifier only by 1.6%.

Thus we can conclude the new methodology to be beneficial. However, we
note that it is still the case that our two metrics do not agree on the best model:
DT-N achieved the lowest times but KNN-N the highest accuracy. The latter is
better at picking a good (within 20% of the minimal) ordering but when it fails
to do so it makes mistakes of greater magnitude. So there is scope for further
work to make our ML models take into account the full range of possibilities. It
may be that this requires a tailored approach to the training of parameters in
each different classifier.

6.2 Comparison of Brown and sotd on the 4-variable dataset

Of the two human-made heuristics, Brown performed far worse than sotd. This
is the opposite of the findings in [29], [23], [25] for 3-variable problems. This is
not necessarily in conflict: the added information taken by sotd will grow in
size exponentially with the variables, and thus we would expect the predictive
information it carries to be more valuable. However, the cost of sotd will also
be increasing rapidly denting this value. The time taken by sotd to make all the
predictions is 286 s, while the time for Brown is less than 10% of that at 23 s.
For this dataset at least, it is well worth paying the price of sotd as the savings
over Brown’s heuristic are far more substantial.

Table 2. Performance on the testing dataset of the ML classifiers (using both the
standard and new cross-validation routines), the human-made heuristics, and a random
choice. The virtual best and worst solvers show the range of possibilities.

DT-O DT-N KNN-O KNN-N MLP-O MLP-N SVM-O SVM-N

Accuracy 51.7% 54.3% 53.9% 54.5% 53.6% 56.9% 53.9% 54.9%
Time (s) 4, 022 3, 627 3, 808 3, 748 3, 972 3, 784 3, 795 3, 672

Virtual Best Virtual Worst random Brown sotd

Accuracy 100% 0% 17.0% 20.1% 47.8%
Time (s) 2, 177 22, 735 8, 291 8, 292 4, 348



Improved cross-validation for classifiers that make algorithmic choices 13

6.3 Value of ML on the 4-variable dataset

All heuristics (ML and human-made) are further away from the optimum on
this 4-variable dataset than they were on the three variable one, to be expected
given we are choosing from 24 rather than 6 orderings. Our best performing
model achieves timings 67% greater than the minimum (it was 6% for 3-variable
problems). However, the best human-made heuristic had timings 98% greater.

In fact, every ML model outperformed both the human constructed heuris-
tics in regards to both metrics, and when using either the original or the new
cross-validation approach. So we can easily conclude that our ML methodology
generalises to 4-variable problems. However, it also clear that there is much more
scope for future improvement.

7 Summary

We have demonstrated that our methodology of ML for choosing a CAD variable
ordering may be applied to 4-variable problems where it continues its dominance
over human-made heuristics. We have also presented an addition to the ML
training methodology to better reflect our application domain and demonstrated
the benefit of this experimentally. This new methodology could be applied to any
ML application which seeks to make a choice to minimise computational runtime.

Acknowledgements This work is funded by EPSRC Project EP/R019622/1:
Embedding Machine Learning within Quantifier Elimination Procedures.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
2. Bradford, R., Chen, C., Davenport, J., England, M., Moreno Maza, M., Wilson,

D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds.) Computer Algebra in Scien-
tific Computing, Lecture Notes in Computer Science, vol. 8660, pp. 44–58. Springer
International Publishing (2014), http://dx.doi.org/10.1007/978-3-319-10515-4 4

3. Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D.,
Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber, A.: A case study on the
parametric occurrence of multiple steady states. In: Proceedings of the 2017 ACM
International Symposium on Symbolic and Algebraic Computation. pp. 45–52.
ISSAC ’17, ACM (2017), https://doi.org/10.1145/3087604.3087622

4. Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grig-
oriev, D., Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber, A.:
Identifying the parametric occurrence of multiple steady states for some
biological networks. Journal of Symbolic Computation 98, 84–119 (2020),
https://doi.org/10.1016/j.jsc.2019.07.008

5. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. Journal of Symbolic Computation
76, 1–35 (2016), http://dx.doi.org/10.1016/j.jsc.2015.11.002

http://dx.doi.org/10.1007/978-3-319-10515-4_4
https://doi.org/10.1145/3087604.3087622
https://doi.org/10.1016/j.jsc.2019.07.008
http://dx.doi.org/10.1016/j.jsc.2015.11.002


14 D. Florescu and M. England

6. Bradford, R., Davenport, J., England, M., Wilson, D.: Optimising problem formu-
lations for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange,
C., Sojka, P., Windsteiger, W. (eds.) Intelligent Computer Mathematics, Lecture
Notes in Computer Science, vol. 7961, pp. 19–34. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39320-4 2

7. Bridge, J.: Machine learning and automated theorem proving. Tech. Rep. UCAM-
CL-TR-792, University of Cambridge, Computer Laboratory (2010)

8. Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order
theorem proving. Journal of Automated Reasoning 53, 141–172 (2014),
https://doi.org/10.1007/s10817-014-9301-5

9. Brown, C.: Companion to the tutorial: Cylindrical al-
gebraic decomposition, presented at ISSAC ’04. URL
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf (2004)

10. Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical
algebraic decomposition. In: Proceedings of the 2007 International Symposium
on Symbolic and Algebraic Computation. pp. 54–60. ISSAC ’07, ACM (2007),
https://doi.org/10.1145/1277548.1277557

11. Carette, J.: Understanding expression simplification. In: Proceedings of the 2004
International Symposium on Symbolic and Algebraic Computation. pp. 72–79.
ISSAC ’04, ACM (2004), https://doi.org/10.1145/1005285.1005298

12. Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts & Monographs in Symbolic Computation, Springer-Verlag (1998),
https://doi.org/10.1007/978-3-7091-9459-1

13. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylin-
drical algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.)
Computer Mathematics, pp. 199—221. Springer Berlin Heidelberg (2014),
https://doi.org/10.1007/978-3-662-43799-5 17

14. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of the 2009 Interna-
tional Symposium on Symbolic and Algebraic Computation. pp. 95–102. ISSAC
’09, ACM (2009), https://doi.org/10.1145/1576702.1576718

15. Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th conference on
Message Understanding (MUC4 ’92). pp. 22–29. Association for Computational
Linguistics. (1992), https://doi.org/10.3115/1072064.1072067

16. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proceedings of the 2nd GI Conference on Automata Theory
and Formal Languages. pp. 134–183. Springer-Verlag (reprinted in the collection
[12]) (1975), https://doi.org/10.1007/3-540-07407-4 17

17. Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quan-
tifier elimination. Journal of Symbolic Computation 12, 299–328 (1991),
https://doi.org/10.1016/S0747-7171(08)80152-6

18. Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the
presence of complex numbers, functions with branch cuts etc. In: 14th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing. pp.
83–88. SYNASC ’12, IEEE (2012), http://dx.doi.org/10.1109/SYNASC.2012.68

19. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for
CAD. In: Proceedings of the 2004 International Symposium on Sym-
bolic and Algebraic Computation. pp. 111–118. ISSAC ’04, ACM (2004),
https://doi.org/10.1145/1005285.1005303

http://dx.doi.org/10.1007/978-3-642-39320-4_2
https://doi.org/10.1007/s10817-014-9301-5
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
http://dx.doi.org/10.1109/SYNASC.2012.68
https://doi.org/10.1145/1005285.1005303


Improved cross-validation for classifiers that make algorithmic choices 15

20. England, M.: Machine learning for mathematical software. In: Davenport, J.,
Kauers, M., Labahn, G., Urban, J. (eds.) Mathematical Software – Proc. ICMS
2018. Lecture Notes in Computer Science, vol. 10931, pp. 165–174. Springer Inter-
national Publishing (2018), https://doi.org/10.1007/978-3-319-96418-8 20

21. England, M., Bradford, R., Davenport, J.: Cylindrical algebraic decomposition with
equational constraints. Journal of Symbolic Computation Accepted (In Press)
(2019), https://doi.org/10.1016/j.jsc.2019.07.019

22. England, M., Bradford, R., Davenport, J., Wilson, D.: Choosing a variable order-
ing for truth-table invariant cylindrical algebraic decomposition by incremental
triangular decomposition. In: Hong, H., Yap, C. (eds.) Mathematical Software –
ICMS 2014. Lecture Notes in Computer Science, vol. 8592, pp. 450–457. Springer
Heidelberg (2014), http://dx.doi.org/10.1007/978-3-662-44199-2 68

23. England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady,
E., Kohlhase, A., Sacerdoti, C. (eds.) Intelligent Computer Mathematics. Lecture
Notes in Computer Science, vol. 11617, pp. 93–108. Springer International Pub-
lishing (2019), https://doi.org/10.1007/978-3-030-23250-4 7

24. England, M., Wilson, D., Bradford, R., Davenport, J.: Using the Regular Chains
Library to build cylindrical algebraic decompositions by projecting and lifting.
In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014. Lecture
Notes in Computer Science, vol. 8592, pp. 458–465. Springer Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-662-44199-2 69

25. Florescu, D., England, M.: Algorithmically generating new algebraic features
of polynomial systems for machine learning. In: Abbott, J., Griggio, A. (eds.)
Proceedings of the 4th Workshop on Satisfiability Checking and Symbolic
Computation (SC2 2019). No. 2460 in CEUR Workshop Proceedings (2019),
http://ceur-ws.org/Vol-2460/

26. Ghaffarian, S., Shahriari, H.: Software vulnerability analysis and discovery us-
ing machine-learning and data-mining techniques: A survey. ACM Comput. Surv.
50(4) (2017), https://doi.org/10.1145/3092566

27. Huang, Z., England, M., Davenport, J., Paulson, L.: Using machine learning
to decide when to precondition cylindrical algebraic decomposition with Groeb-
ner bases. In: 18th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing (SYNASC ’16). pp. 45–52. IEEE (2016),
https://doi.org/10.1109/SYNASC.2016.020

28. Huang, Z., England, M., Wilson, D., Bridge, J., Davenport, J., Paul-
son, L.: Using machine learning to improve cylindrical algebraic de-
composition. Mathematics in Computer Science 13(4), 461–488 (2019),
https://doi.org/10.1007/s11786-019-00394-8

29. Huang, Z., England, M., Wilson, D., Davenport, J., Paulson, L., Bridge, J.: Ap-
plying machine learning to the problem of choosing a heuristic to select the vari-
able ordering for cylindrical algebraic decomposition. In: Watt, S., Davenport, J.,
Sexton, A., Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics, Lec-
ture Notes in Artificial Intelligence, vol. 8543, pp. 92–107. Springer International
(2014), http://dx.doi.org/10.1007/978-3-319-08434-3 8

30. Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning: 6th International Joint Conference
(IJCAR), Lecture Notes in Computer Science, vol. 7364, pp. 339–354. Springer
(2012), https://doi.org/10.1007/978-3-642-31365-3 27

https://doi.org/10.1007/978-3-319-96418-8_20
https://doi.org/10.1016/j.jsc.2019.07.019
http://dx.doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-030-23250-4_7
http://dx.doi.org/10.1007/978-3-662-44199-2_69
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1145/3092566
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1007/s11786-019-00394-8
http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-642-31365-3_27


16 D. Florescu and M. England

31. Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders
for real quantifier elimination of non-prenex formulas. In: Kotsireas, S., Rump,
M., Yap, K. (eds.) Mathematical Aspects of Computer and Information Sciences
(MACIS ’15). Lecture Notes in Computer Science, vol. 9582, pp. 236–251. Springer
International Publishing (2016), https://doi.org/10.1007/978-3-319-32859-1 21

32. Kühlwein, D., Blanchette, J., Kaliszyk, C., Urban, J.: MaSh: Machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interac-
tive Theorem Proving, Lecture Notes in Computer Science, vol. 7998, pp. 35–50.
Springer Berlin Heidelberg (2013), https://doi.org/10.1007/978-3-642-39634-2 6

33. Kuipers, J., Ueda, T., Vermaseren, J.: Code optimization in
FORM. Computer Physics Communications 189, 1–19 (2015),
https://doi.org/10.1016/j.cpc.2014.08.008

34. Liang, J., Hari Govind, V., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical
study of branching heuristics through the lens of global learning rate. In: Gaspers,
S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing – SAT 2017,
Lecture Notes in Computer Science, vol. 10491, pp. 119–135. Springer International
Publishing (2017), https://doi.org/10.1007/978-3-319-66263-3 8

35. Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z.: Non-linear
real arithmetic benchmarks derived from automated reasoning in economics. In:
Bigatti, A., Brain, M. (eds.) Proceedings of the 3rd Workshop on Satisfiability
Checking and Symbolic Computation (SC2 2018). pp. 48–60. No. 2189 in CEUR
Workshop Proceedings (2018), http://ceur-ws.org/Vol-2189/

36. Mulligan, C., Davenport, J., England, M.: TheoryGuru: A Mathematica package
to apply quantifier elimination technology to economics. In: Davenport, J., Kauers,
M., Labahn, G., Urban, J. (eds.) Mathematical Software – Proc. ICMS 2018. Lec-
ture Notes in Computer Science, vol. 10931, pp. 369–378. Springer International
Publishing (2018), https://doi.org/10.1007/978-3-319-96418-8 44

37. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011),
http://www.jmlr.org/papers/v12/pedregosa11a.html

38. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V., Mayr,
E., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing, Lecture Notes
in Computer Science, vol. 4194, pp. 295–301. Springer Berlin Heidelberg (2006),
https://doi.org/10.1007/11870814 25

39. Urban, J.: MaLARea: A metasystem for automated reasoning in large the-
ories. In: Empirically Successful Automated Reasoning in Large Theories
(ESARLT ’07), CEUR Workshop Proceedings, vol. 257, p. 14. CEUR-WS (2007),
http://ceur-ws.org/Vol-257/

40. Wilson, D., Davenport, J., England, M., Bradford, R.: A “piano movers” prob-
lem reformulated. In: 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing. pp. 53–60. SYNASC ’13, IEEE (2013),
http://dx.doi.org/10.1109/SYNASC.2013.14

41. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. Journal Of Artificial Intelligence Research 32, 565–606
(2008), https://doi.org/10.1613/jair.2490

https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1007/978-3-319-66263-3_8
http://ceur-ws.org/Vol-2189/
https://doi.org/10.1007/978-3-319-96418-8_44
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/11870814_25
http://ceur-ws.org/Vol-257/
http://dx.doi.org/10.1109/SYNASC.2013.14
https://doi.org/10.1613/jair.2490

	Improved cross-validation for classifiers that make algorithmic choices to minimise runtime without compromising output correctness

