Skip to main content

Reliable Computation of the Singularities of the Projection in \(\mathbb R^3\) of a Generic Surface of \(\mathbb R^4\)

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11989))

  • 378 Accesses

Abstract

Computing efficiently the singularities of surfaces embedded in \(\mathbb R^3\) is a difficult problem, and most state-of-the-art approaches only handle the case of surfaces defined by polynomial equations. Let F and G be \(C^\infty \) functions from \(\mathbb R^4\) to \(\mathbb R\) and \(\mathcal M=\{(x,y,z,t) \in \mathbb R^4 \, | \, F(x,y,z,t)=G(x,y,z,t)=0\}\) be the surface they define. Generically, the surface \(\mathcal M\) is smooth and its projection \(\Omega \) in \(\mathbb R^3\) is singular. After describing the types of singularities that appear generically in \(\Omega \), we design a numerically well-posed system that encodes them. This can be used to return a set of boxes that enclose the singularities of \(\Omega \) as tightly as required. As opposed to state-of-the art approaches, our approach is not restricted to polynomial mapping, and can handle trigonometric or exponential functions for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Bruin, P.W., Vos, F.M., Post, F.H., Frisken-Gibson, S.F., Vossepoel, A.M.: Improving triangle mesh quality with SurfaceNets. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 804–813. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_83

    Chapter  Google Scholar 

  2. Chou, S., Kjolstad, F., Amarasinghe, S.: Format abstraction for sparse tensor algebra compilers. Proc. ACM Program. Lang. 2(OOPSLA), 123:1–123:30 (2018). https://doi.org/10.1145/3276493

    Article  Google Scholar 

  3. Delanoue, N., Lagrange, S.: A numerical approach to compute the topology of the apparent contour of a smooth mapping from \(R^2\) to \(R^2\). J. Comput. Appl. Math. 271, 267–284 (2014). https://doi.org/10.1016/j.cam.2014.03.032

    Article  MathSciNet  MATH  Google Scholar 

  4. Demazure, M.: Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems. UTX. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-57134-3

    Book  MATH  Google Scholar 

  5. Gibson, S.F.F.: Constrained elastic surface nets: generating smooth surfaces from binary segmented data. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 888–898. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056277

    Chapter  Google Scholar 

  6. Golubistky, M., Guillemin, V.: Stable Mappings and Their Singularities. GTM, vol. 14. Springer, New York (1973). https://doi.org/10.1007/978-1-4615-7904-5

    Book  Google Scholar 

  7. Goryunov, V.V.: Local invariants of mappings of surfaces into three-space. In: Arnold, V.I., Gelfand, I.M., Retakh, V.S., Smirnov, M. (eds.) The Arnold-Gelfand Mathematical Seminars, pp. 223–255. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-1-4612-4122-5_11

    Chapter  Google Scholar 

  8. Hobbs, C.A., Kirk, N.P.: On the classification and bifurcation of multigerms of maps from surfaces to 3-space. Math. Scand. 89(1), 57–96 (2001). https://doi.org/10.7146/math.scand.a-14331

    Article  MathSciNet  MATH  Google Scholar 

  9. Imbach, R., Moroz, G., Pouget, M.: Numeric and certified isolation of the singularities of the projection of a smooth space curve. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 78–92. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_6

    Chapter  MATH  Google Scholar 

  10. Imbach, R., Moroz, G., Pouget, M.: A certified numerical algorithm for the topology of resultant and discriminant curves. J. Symb. Comput. 80(Part 2), 285–306 (2017). https://doi.org/10.1016/j.jsc.2016.03.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013). https://doi.org/10.1137/130906544

    Article  MathSciNet  MATH  Google Scholar 

  12. Mond, D.: Classification of certain singularities and applications to differential geometry. Ph.D. thesis, The University of Liverpool (1982)

    Google Scholar 

  13. Mond, D.: On the classification of germs of maps from \(\mathbb{R}^2\) to \(\mathbb{R}^3\). Proc. London Math. Soc. s3–s50(2), 333–369 (1985). https://doi.org/10.1112/plms/s3-50.2.333

  14. Moroz, G.: Voxelize (2018–2019). https://gitlab.inria.fr/gmoro/voxelize. https://doi.org/10.5281/zenodo.3562432

  15. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511526473

    Book  MATH  Google Scholar 

  16. Sinha, R.O., Atique, R.W.: Classification of multigerms (from a modern viewpoint). Minicourse 3 of the School on Singularity Theory, 17–22 July 2016 (2016). www.worksing.icmc.usp.br/main_site/2016/minicourse3_notes.pdf

  17. Smith, S., Karypis, G.: Tensor-matrix products with a compressed sparse tensor. In: Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms, IA3 2015, pp. 5:1–5:7. ACM (2015). https://doi.org/10.1145/2833179.2833183

Download references

Acknowledgment

We thanks David Mond for providing to us, via a private communication, this proof of the characterization of cusps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Pouget .

Editor information

Editors and Affiliations

7 Appendix: Proof of Lemma 1

7 Appendix: Proof of Lemma 1

Let \(q\in \mathcal {M}\) be a cross-cap singularity of the projection \(\mathfrak p : \mathcal {M} \mapsto \mathbb R^3\).

First, the condition \(q \in \Sigma ^1(\mathfrak p )\) means that \(d\mathfrak p (q)\) has corank 1. Since rank(\(\mathfrak p \)) = 2 – corank(\(\mathfrak p \)) = 1, the condition is also equivalent to \(d\mathfrak p (q)\) has rank 1. In other words, the 2-dimensional tangent plane to \(\mathcal {M}\) at q projects to a line, that is the direction of projection is in the tangent plane. Thus, the condition \(q \in \Sigma ^1(\mathfrak p )\) of Definition 7 is equivalent to the first condition of Lemma 1: the direction of projection is in the tangent plane.

We now assume that the surface \(\mathcal {M}\) is locally parameterized in a neighborhood of q by \((z,t) \mapsto (a(z,t),b(z,t),z,t)\), so that \(\mathfrak p (z,t)= (a(z,t),b(z,t),z)\). The space \(J^1(\mathcal {M},\mathbb R^3)\) is thus locally equal to \(U\times \mathbb R^3 \times L(\mathbb R^2,\mathbb R^3)\) where U is a subset of \(\mathbb R^2\) and L stands for the space of linear mappings. The 1-jet of a mapping \((f_1(z,t),f_2(z,t),f_3(z,t)): \mathcal {M} \mapsto \mathbb R^3\) is

$$\left( (z,t), (f_1(z,t),f_2(z,t),f_3(z,t)), \begin{pmatrix} f_{1z} &{} f_{1t} \\ f_{2z} &{} f_{2t} \\ f_{3z} &{} f_{3t}\end{pmatrix} \right) . $$

\(\Sigma ^1\) is the subset of \(J^1(\mathcal {M},\mathbb R^3)\) such that the matrix \(\begin{pmatrix} f_{1z} &{} f_{1t} \\ f_{2z} &{} f_{2t} \\ f_{3z} &{} f_{3t}\end{pmatrix} \) has corank 1, that is has rank 1. Without loss of generality, if we assume \((f_{3z}, f_{3t})\ne (0,0)\), \(\Sigma ^1\) is thus implicitly defined by the two equations: \( \begin{vmatrix} f_{1z}&f_{1t} \\ f_{3z}&f_{3t} \end{vmatrix} = 0 \text { and } \begin{vmatrix} f_{2z}&f_{2t} \\ f_{3z}&f_{3t} \end{vmatrix}=0. \) One thus has \(\Sigma ^1=\Phi ^{-1}(0)\) with

$$\begin{aligned} \Phi : J^1 (\mathcal { M}, \mathbb R^3)&\rightarrow \mathbb R^2&\\ \left( (z,t), (f_1(z,t),f_2(z,t),f_3(z,t)), \begin{pmatrix} f_{1z} &{} f_{1t} \\ f_{2z} &{} f_{2t} \\ f_{3z} &{} f_{3t} \end{pmatrix} \right)&\mapsto \begin{pmatrix} f_{1z} f_{3t} - f_{1t} f_{3z} \\ f_{2z} f_{3t} - f_{2t} f_{3z} \end{pmatrix}&\end{aligned}$$

According to [6, Lemma 4.3], \(j^1\mathfrak p \) is transverse to \(\Sigma ^1\) at q iff \(\Phi \cdot j^1\mathfrak p \) is a submersion at q. On the other hand, \(\Phi \cdot j^1\mathfrak p = \Phi \left( (z,t), (a(z,t),b(z,t),z), \begin{pmatrix} a_{z} &{} a_{t} \\ b_{z} &{} b_{t} \\ 1 &{} 0\end{pmatrix} \right) =-(a_t,b_t)\). This mapping is a submersion iff its Jacobian \(\begin{pmatrix} a_{zt} &{} a_{tt} \\ b_{zt} &{} b_{tt} \end{pmatrix}\) is full rank, that is \(a_{zt}b_{tt}-a_{tt}b_{zt}\ne 0\) which is exactly the second condition of Lemma 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diatta, S., Moroz, G., Pouget, M. (2020). Reliable Computation of the Singularities of the Projection in \(\mathbb R^3\) of a Generic Surface of \(\mathbb R^4\). In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics