Skip to main content

Improving Energy Consumption in Iterative Problems Using Machine Learning

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

To reach the new milestone in High Performance Computing, energy and power constraints have to be considered. Optimal workload distributions are necessary in heterogeneous architectures to avoid inefficient usage of computational resources. Static load balancing techniques are not able to provide optimal workload distributions for problems of irregular nature. On the other hand, dynamic load balancing algorithms are coerced by energy metrics that are usually slow and difficult to obtain. We present a methodology based on Machine Learning to perform dynamic load balancing in iterative problems. Machine Learning models are trained using data acquired during previous executions. We compare this new approach to two dynamic workload balancing techniques already proven in the literature. Inference times for the Machine Learning models are fast enough to be applied in this environment. These new predictive models further improve the workload distribution, reducing the energy consumption of iterative problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, A., Blanco, V., Almeida, F.: Dynamic load balancing on heterogeneous multi-GPU systems. Comput. Electr. Eng. 39(8), 2591–2602 (2013)

    Article  Google Scholar 

  2. Balaprakash, P., Alexeev, Y., Mickelson, S.A., Leyffer, S., Jacob, R., Craig, A.: Machine-learning-based load balancing for community ice code component in CESM. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2014. LNCS, vol. 8969, pp. 79–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17353-5_7

    Chapter  Google Scholar 

  3. Berral, J.L., et al.: Towards energy-aware scheduling in data centers using machine learning. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. e-Energy 2010, pp. 215–224. ACM, New York (2010). https://doi.org/10.1145/1791314.1791349

  4. Cabrera, A., Acosta, A., Almeida, F., Blanco, V.: A heuristic technique to improve energy efficiency with dynamic load balancing. J. Supercomput. 75(3), 1610–1624 (2019). https://doi.org/10.1007/s11227-018-2718-6

    Article  Google Scholar 

  5. Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy consumption using eml (energy measurement library). Comput. Sci. Res. Dev. 30(2), 135–143 (2015). https://doi.org/10.1007/s00450-014-0269-5

    Article  Google Scholar 

  6. Chen, S.L., Chen, Y.Y., Kuo, S.H.: CLB: a novel load balancing architecture and algorithm for cloud services. Comput. Electr. Eng. 58, 154–160 (2017)

    Article  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Fox, G., et al.: Learning everywhere: pervasive machine learning for effective high-performance computation. arXiv preprint arXiv:1902.10810 (2019)

  9. Friedman, J.H., et al.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MathSciNet  Google Scholar 

  10. Garzón, E.M., Moreno, J.J., Martínez, J.A.: An approach to optimise the energy efficiency of iterative computation on integrated GPU-CPU systems. J. Supercomput. 73(1), 114–125 (2017). https://doi.org/10.1007/s11227-016-1643-9

    Article  Google Scholar 

  11. Gupta, A., Acun, B., Sarood, O., Kalé, L.V.: Towards realizing the potential of malleable jobs. In: 2014 21st International Conference on High Performance Computing (HiPC), pp. 1–10. IEEE (2014)

    Google Scholar 

  12. Guzek, M., Kliazovich, D., Bouvry, P.: HEROS: energy-efficient load balancing for heterogeneous data centers. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 742–749. IEEE (2015)

    Google Scholar 

  13. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  14. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008). https://doi.org/10.18637/jss.v028.i05

    Article  Google Scholar 

  15. Manumachu, R.R., Lastovetsky, A.: Bi-objective optimization of data-parallel applications on homogeneous multicore clusters for performance and energy. IEEE Trans. Comput. 67(2), 160–177 (2017)

    Article  MathSciNet  Google Scholar 

  16. Martín, G., Singh, D.E., Marinescu, M.C., Carretero, J.: Enhancing the performance of malleable MPI applications by using performance-aware dynamic reconfiguration. Parallel Comput. 46, 60–77 (2015)

    Article  Google Scholar 

  17. Soundarabai, P.B., Sahai, R., Thriveni, J., Venugopal, K., Patnaik, L.: Comparative study on load balancing techniques in distributed systems. Int. J. Inf. Technol. Knowl. Manag. 6(1), 53–60 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science through the TIN2016-78919-R project, the Government of the Canary Islands, with the project ProID2017010130 and the grant TESIS2017010134, which is co-financed by the Ministry of Economy, Industry, Commerce and Knowledge of Canary Islands and the European Social Funds (ESF), operative program integrated of Canary Islands 2014–2020 Strategy Aim 3, Priority Topic 74 (85%); the Spanish network CAPAP-H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabrera, A., Almeida, F., Blanco, V., Castellanos–Nieves, D. (2020). Improving Energy Consumption in Iterative Problems Using Machine Learning. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics