Skip to main content

Automatic Software Tuning of Parallel Programs for Energy-Aware Executions

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12044))

  • 616 Accesses

Abstract

For large scale systems, such as data centers, energy efficiency has proven to be key for reducing capital, operational expenses and environmental impact. Power drainage of a system is closely related to the type and characteristics of workload that the device is running. For this reason, this paper presents an automatic software tuning method for parallel program generation able to adapt and exploit the hardware features available on a target computing system such as an HPC facility or a cloud system in a better way than traditional compiler infrastructures. We propose a search based approach combining both exact methods and approximated heuristics evolving programs in order to find optimized configurations relying on an ever-increasing number of tunable knobs i.e., code transformation and execution options (such as the number of OpenMP threads and/or the CPU frequency settings). The main objective is to outperform the configurations generated by traditional compiling infrastructures for selected KPIs i.e., performance, energy and power usage (for both for the CPU and DRAM), as well as the runtime. First experimental results tied to the local optimization phase of the proposed framework are encouraging, demonstrating between 8% and 41% improvement for all considered metrics on a reference benchmarking application (i.e., Linpack). This brings novel perspectives for the global optimization step currently under investigation within the presented framework, with the ambition to pave the way toward automatic tuning of energy-aware applications beyond the performance of the current state-of-the-art compiler infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dynamic tunable knobs are also expected to be covered at a relative short term, but this will assume to rely on other compiling frameworks more suitable for such cases such as Insieme - see http://www.insieme-compiler.org.

References

  1. Agakov, F., et al.: Using machine learning to focus iterative optimization. In: International Symposium on Code Generation & Optimization (CGO 2006), pp. 295–305 (2006)

    Google Scholar 

  2. Carrillo, V.M., Taboada, H.: A post-pareto approach for multi-objective decision making using a non-uniform weight generator method, vol. 12, pp. 116–121 (2012)

    Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  4. Desrochers, S., Paradis, C., Weaver, V.: A validation of DRAM RAPL power measurements. In: Proceedings of the 2nd International Symposium on Memory Systems (MEMSYS 2016), pp. 455–470 (2016)

    Google Scholar 

  5. Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1979)

    Book  Google Scholar 

  6. Durillo, J.J., Fahringer, T.: From single- to multi-objective auto-tuning of programs: advantages and implications. Sci. Program. 22, 285–297 (2014). https://doi.org/10.1155/2014/818579

    Article  Google Scholar 

  7. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: RAPL in action: experiences in using RAPL for power measurements. TOMPECS 3(2), 1–26 (2018)

    Article  Google Scholar 

  8. Kieffer, E., Danoy, G., Bouvry, P., Nagih, A.: Bayesian optimization approach of general bi-level problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2017), pp. 1614–1621 (2017)

    Google Scholar 

  9. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis & transformation. In: Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004), Palo Alto, California, March 2004

    Google Scholar 

  10. Naono, K., Teranishi, K., Cavazos, J., Suda, R.: Software Automatic Tuning (From Concepts to State-of-the-Art Results). Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6935-4

    Book  Google Scholar 

  11. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic HPC cluster: the UL experience. In: International Conference on High Performance Computing & Simulation (HPCS 2014), Bologna, Italy, pp. 959–967. IEEE, July 2014

    Google Scholar 

Download references

Acknowledgments

The experiments presented in this paper were carried out using the HPC facilities of the University of Luxembourg [11] – see hpc.uni.lu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sébastien Varrette , Frédéric Pinel , Emmanuel Kieffer , Grégoire Danoy or Pascal Bouvry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varrette, S., Pinel, F., Kieffer, E., Danoy, G., Bouvry, P. (2020). Automatic Software Tuning of Parallel Programs for Energy-Aware Executions. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics