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Abstract. Using large computer systems such as HPC clusters up to
their full potential can be hard. Many problems and inefficiencies relate
to the interactions of user workloads and system-level policies. These
policies enable various setup choices of the resource management system
(RMS) as well as the applied scheduling policy. While expert’s assess-
ment and well known best practices do their job when tuning the perfor-
mance, there is usually plenty of room for further improvements, e.g., by
considering more efficient system setups or even radically new scheduling
policies. For such potentially damaging modifications it is very suitable to
use some form of a simulator first, which allows for repeated evaluations
of various setups in a fully controlled manner. This paper presents the
latest improvements and advanced simulation capabilities of the Alea job
scheduling simulator that has been actively developed for over 10 years
now. We present both recently added advanced simulation capabilities
as well as a set of real-life based case studies where Alea has been used
to evaluate major modifications of real HPC and HTC systems.

1 Introduction

The actual performance of a real RMS depends on many variables that include
the type (mix) of users’ workloads (e.g., parallel vs. sequential jobs, short vs.
long jobs), applied job scheduler and its scheduling algorithm (e.g., trivial First
Come First Served (FCFS) or backfilling [13]) and also additional system con-
figuration that typically defines job mapping to queues and their priorities and
various operational limits (e.g., max. number of CPUs available to a given user).
Therefore, designing a proper configuration is the most important, yet truly
daunting process. Due to the complexity of the whole system even straightfor-
ward (conservative) changes in the configuration of the production system can
have highly unexpected and often counterintuitive side effects that emerge from
the mutual interplay of various policies and components of the RMS and sched-
uler [10]. Therefore, simulators that can emulate a particular production system
and its configuration represent highly useful tools for both resource owners, sys-
tem administrators and researchers in general.

Alea jobs scheduling simulator has been first introduced in 2007 as a basic
simulator and underwent a major upgrade in 2010 [9] that mainly focused on
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improving the rather slow simulation speed and also introduced some visualiza-
tion capabilities. In 2016, Alea was the first mainstream open source simulator
to enable the use of so called dynamically adapted workloads, where the perfor-
mance of the simulated scheduler directly influences the submission rates (arrival
times) of jobs from the workload [20], providing an important step to mimic the
natural user feedback to the system performance [12].

Since then, many new features have been implemented and the simulator
has been successfully used for various purposes, both as a purely research tool as
well as when testing new setups and new scheduling policies for production HPC
and HTC systems. The main contribution of this paper is that (1) we describe
recent improvements in the simulator, that allow for truly complex simulations
that involve several detailed setups that correspond to typical real-life based
scenarios, (2) we describe the recent speedup of the simulator that enables us
to run truly large-scale simulations involving millions of jobs and thousands of
nodes that complete in just a few hours, and (3) we provide several real-life
based case studies where Alea has been used to develop and evaluate effects of
major modifications of real HPC and HTC systems.

In Section 2 we provide a brief overview of existing related work. Next, Sec-
tion 3 shows the current design of Alea and its major features and simulation
capabilities. Section 4 presents several real-life examples demonstrating how Alea
has been used in practice in order to improve the performance of production sys-
tems. Finally, we conclude the paper in Section 5.

2 Related Work

Throughout the years, there have been many grid, HPC and cloud simulators.
In most cases, each such simulator falls into one of three main groups. The first
group represents ad hoc simulators that are built from scratch. Those include,
e.g., the recent AccaSim or Qsim. AccaSim is freely available library for Python,
thus compatible with any major operating system, and executable on a wide
range of computers thanks to its lightweight installation and light memory foot-
print [5]. Qsim is an event-driven scheduling simulator for Cobalt, which is an
HPC job management suite supporting compute clusters of the IBM BlueGene
series [19]. It is using exactly the same scheduling and job allocation schemes
used (or proposed) for Cobalt and replays the job scheduling behavior using
historic workloads analyzing how a new scheduling policy can affect system per-
formance. Still, both simulators are somehow limited. Qsim is aiming primar-
ily on BlueGene-like architectures, while AccaSim’s capabilities (e.g., supported
scheduling policies) are still rather limited as of early 2019%.

Second group of simulators is typically using some underlying simulation
toolkit, e.g., SimGrid, GridSim or CloudSim. This group is represented, e.g., by
the recent Batsim, Simbatch or GSSIM [3]. Batsim is built on top of SimGrid [4].
It is made such that any event-based scheduling algorithm can be plugged to it

! https://accasim.readthedocs.io/
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and tested. Thus, it allows to compare various scheduling algorithms from differ-
ent domains. Such schedulers must follow a text-based protocol to communicate
with Batsim properly. Simbatch and GSSIM were using SimGrid and Gridsim
respectively, but their development is currently discontinued for many years.

Finally, the last group typically uses some real-life RMS executed in a sim-
ulation mode. For example, the ScSF simulator [15] emulates a real system by
using Slurm Workload Manager inside its core to realistically mimic the real
RMS. Similar “simulation mode” was supported in Moab in the past? but has
been discontinued in the recent versions.

The aforementioned list is not exhaustive, containing only widely used/recent
toolkits and simulators. More detailed survey can be found in [5,9].

3 Architecture and Major Functionality

Alea is platform-independent event-driven discrete time simulator written in
Java. It is built on the top of the GridSim simulation toolkit [18]. GridSim pro-
vides the basic functionality to model various entities in a simulated computing
system, as well as methods to handle the simulation events. The behavior of the
simulator is driven by an event-passing protocol. For each simulated event—
such as job arrival or completion — one message defining this event is created. It
contains the identifier of the message recipient, the type of the event, the time
when the event will occur and the message data. Alea extends this basic Grid-
Sim’s functionality and provides a model allowing for detailed simulation of the
whole scheduling process in a typical HPC/HTC system. To do that, Alea either
extends existing GridSim classes (e.g., GridResource or AllocationPolicy)
or it provides new classes on its own, especially the core Scheduler class and
classes responsible for data parsing and collection /visualization of simulation re-
sults. Figure 1 shows the overall scheme of Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator.

The main part of the simulator is the centralized job scheduler. The scheduler
manages the communication with other parts of the simulator. Also, it main-
tains important data structures such as job queue(s). Job scheduling decisions
are performed by scheduling algorithms that can be easily added using existing
simple interfaces. Furthermore, scheduling process can be further influenced by
using additional system policies, e.g., the fair-sharing policy which dynamically
prioritizes job queue(s). Also, various limits that further refine how various job
classes are handled are supported by Alea. Additional parts simulate the actual
computing infrastructure, including the emulation of machine failures/restarts.
Workload readers are used to feed the simulator with input data about jobs being
executed and the simulator also provides means for visualization and generation
of simulation outputs. Alea is freely available at GitHub [1].

The primary goal of our job scheduling simulator is to allow for realistic
evaluation of new scheduling policies or new setups of computing systems. For

2 http://docs.adaptivecomputing.com/mwm/archive/6-0/2.5initialtesting.php
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Fig. 1. Main parts of the Alea simulator.

this purpose, it is necessary to model all important features that have significant
impact on the performance of the system. Our own “hands on” experience from
operating production systems have taught us that many promising “theoretical”
works based on simulations are not usable in practice, due to the overly simpli-
fied nature of performed simulations. Often, researchers focus solely on partic-
ular scheduling algorithm while ignoring additional system-related constraints
and policies. However, production systems use literally dozens of additional pa-
rameters, rules and policies that significantly influence the scheduler’s decisions
and thus the performance of the system [16, 10]. Therefore, following subsections
provide an overview of the advanced simulation capabilities that make Alea a
very useful tool for detailed simulations of actual systems.

3.1 Detailed System Simulation Capabilities

As we have observed in practice, system performance can be largely affected
by the interactions of various components and parameters of an actual RMS.
While their nature or scope can be basic and limited, they can easily turn a well
functioning system into a troublesome. Therefore, the simulator should be able
to mimic these features within the simulation. In our view, such features include:

queues and their priorities, constraints and various limits

— quotas limiting user CPU usage

— mechanisms to calculate job priorities such as fair-share
common scheduling algorithms aware of aforementioned features

Queues, Limits and Quotas First of all, Alea allows to specify the number
of job queues, their names, priorities and queue-related constraints such as the
maximum number of CPUs that can be used by jobs from that queue at any given
moment. Multiple queues are common in systems with heterogeneous workloads.
Here, system resources are usually partitioned into several (sometimes overlap-
ping) pools, where each pool has a corresponding queue. Users’ workloads (jobs)
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are then mapped to these queues. Queue limits then avoid potentially danger-
ous situations such as saturation of the whole system — either with jobs from
a single user, or with a single class of jobs [7]. For example, it would be very
unwise to fill the whole system with long running jobs as this would cause huge
wait times for shorter jobs [10]. Also users and/or groups are often subject to a
upper bound on the amount of resources they can use simultaneously. For this
purpose, Alea provides CPU quotas, that guarantee that a user/group will not
exceed the corresponding maximum allowed share of resources [2].

Fair-Sharing Production systems—instead of default job arrival order — often
use some priority mechanism to dynamically prioritize system users. This is typ-
ically done by fair-sharing. We provide several variants of fair-sharing mecha-
nisms that are used to prioritize jobs (users) within queue(s) in order to guar-
antee user-to-user fairness. Fair-share mechanism dynamically adjusts job/user
priorities such that the use of system resources is fairly balanced among the
users [7]. We support both basic fair-sharing mechanisms that only reflect CPU
usage as well as more complex multi-resource implementations® which also reflect
memory consumption.

Scheduling Algorithms Scheduling algorithms play a critical role in RMS.
Alea supports all mainstream algorithms that can be typically observed in prac-
tice, starting with trivial FCFS, Shortest Job First and Earliest Deadline First
and continuing to more efficient solutions such as EASY backfilling or Conser-
vative backfilling [13]. Alea also supports schedule optimization methods, that
can be used to further improve initial job schedules as prepared by, e.g., the
Conservative backfilling policy. Our optimization methods are based on meta-
heuristics and can use various objective functions to guide the metaheuristic
toward improved schedule [8].

3.2 Dynamic Workloads

There is one more part which plays a significant role in job scheduling — the
workload being processed by the system or the simulator. Alea supports two ways
how workload can be fed into the simulator. First, it uses traditional “workload
replay” mode, where jobs are submitted based on a historic workload description
file (log) and their arrival times are based on the original timestamps as recorded
in the log. Alternatively, Alea allows to use so called dynamic workload adapta-
tion, where job arrival times are not fixed but can change throughout the course
of the simulation, depending on the scheduler’s performance. For this purpose,
Alea provides a feedback loop that communicates with the workload reader and
informs it upon each job completion. Using this data, the workload reader can
either speed up or postpone job submissions for simulated users. This complex
behavior mimics real world experience, where users react to the performance of

3 For example, we support Dominant Resource Fairness (DRF) inspired fair-share [6].
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the scheduler. In other words, real-life job arrival times are always correlated to
the “user experience”, thus it is unrealistic to use plain “workload replay” mode,
because the results will be somehow skewed by the “embedded” influence of the
original scheduler that is captured in the historic workload log, i.e., in the job
arrival time pattern. Alea’s implementation is based on the work of Zakay and
Feitelson [20], but it also allows to write your own workload adaptation engine,
having different job submission adaptation logic.

3.3 Simulation Speed

Since the start of Alea project, simulation speed was our second most impor-
tant goal right after the capabilities of our simulator. During the years, Alea
has introduced several improvements into the GridSim’s event-driven simulation
model that significantly speed up the simulation. Most changes relate to the way
job execution is modeled in the classes that implement job allocation policy on
a modeled physical system (see, e.g., GridSim’s SpaceShared class). As origi-
nally designed, this model was not very time-efficient. Upon each start of a job
j, an internal event was generated that was scheduled to be delivered at the
time Tompi(7), which is the time when such job would complete®. Although this
event at Teompi(j) only corresponds to that job j, GridSim would always scan all
currently executed jobs to check whether those are completed or not. Obviously,
this was not very time efficient way how to proceed with a simulation. Moreover,
with each such check GridSim would also generate one additional internal event
to trigger a similar check (delayed by a predefined time constant) to further as-
sure that no jobs are “forgotten” by the engine. However, this additional event
generator was producing exponential-like increase of events that the GridSim
core had to handle, slowing down the simulation extremely. While these inefhi-
ciencies are tolerable when dealing with small systems (hundreds of CPUs and
few thousands of jobs), they became a real show-stopper for large simulations
involving tens of thousands of CPUs and millions of jobs.

Therefore, we have simplified the whole job processing model such that each
job now only needs one internal event to be processed correctly. This did not
change the behavior of the SpaceShared policy, but it introduced a huge speedup
of the whole simulator. Also, we have improved the speed of scheduling algo-
rithms. Simulations that struggle with large job queue sizes (plenty of waiting
jobs) are often slowed down by the scheduling algorithm which repeatedly tra-
verses long job queues, trying to schedule a new job. With long queues, this may
slow down the simulation significantly, especially when the algorithm itself is
not a trivial one. Therefore, we have introduced a more efficient queue handling
mechanism which — based on user specified parameters— limits the number of
jobs that are checked at each scheduling run. This modification brought another
huge improvement.

Figure 2 shows an example of the speedup obtained by our techniques. It
shows the number of completed jobs that were simulated during one hour. This

4 Tcompl (]) == Tcurrent + Truntime (])
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Fig. 2. Number of completed jobs during 1 hour-long simulation using different imple-
mentations of SpaceShared policy and (un)optimized queue handling.

experiment involved large system with over 33K CPU cores and many peaks in
the job queue that reached up to 5K of waiting jobs. The results of our optimized
event-processing mechanism and the queue handling mechanism are compared
to the original GridSim’s implementation, with the “exponential” event genera-
tor either turned on or off. Clearly, there is a huge difference when the optimized
event-processing mechanism is introduced (denoted as “Alea”). Even bigger im-
provement is reached once the more efficient queue handling mechanism is used
(Alea + improved queue handling). This effect is amplified by the fact that this
experiment often experienced very long queue of waiting jobs.

3.4 Visualization

Alea offers Visualizator class that provides crucial methods to display graph-
ical outputs during a simulation. Several metrics and outputs that are generally
useful, e.g., for debugging purposes are available by default, including the vi-
sualization of created job schedule and several popular objectives such as the
average CPU utilization, the number of waiting and running jobs or the number
of requested, utilized and available CPUs. An example of such graphical output
is captured in Figure 3, showing the main window representing the job schedule
(jobs belonging to the same user have the same color in this particular view)
and several other metrics such as the overall and per-cluster utilization or the
numbers of waiting/running jobs and used/requested CPUs.

4 Notable Usages

In this section we present several examples when Alea has been used to model
an existing system and analyze the impact of new scheduling approaches.

4.1 MetaCentrum Queue Reconfiguration

The first example is a major queue reconfiguration that took place in MetaCen-
trum, which is the largest Czech provider of distributed computing facilities for
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Fig. 3. Alea’s visualization output showing current job schedule and various metrics.

academic and scientific purposes. In this case, Alea has been used to evaluate the
impact of new queue setup, where the goal has been to increase fairness, system
utilization and wait times across different classes of jobs. Existing conservative
setup with 3 major queues (short, normal and long jobs) and rather constrain-
ing limits concerning the maximum allowed number of simultaneously running
long jobs has been replaced with an improved design introducing new, more
fine-grained queues with more generous limits. The promising effect observed in
the simulations was then also validated in practice. With the new setup being
introduced in January 2014, the overall CPU utilization has increased by 43.2%
while the average wait time has decreased by 17.9% (4.4 vs. 3.6 hours) [11].

4.2 Plan-based Scheduler with Metaheuristic Optimization

In July 2014, CERIT Scientific Cloud started to use a unique Torque-compatible
scheduler that —instead of queuing — used planning and metaheuristics to build
and optimize job schedules. This new planning-based scheduler has been first
thoroughly modeled and refined in Alea and then remained in operation until
2017. It was a successful scheduler as it increased the avg. CPU utilization by
9.3% while decreasing the avg. wait time and the avg. bounded slowdown by
36.7% and 79.4%, respectively [8].

4.3 Scheduling with Advance Data Staging

The I/O subsystem is an increasing storage bottleneck on HPC Systems. The
ADA-FS project [14] tries to close the bottleneck with deploying an on-demand
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file system and staging the data in advance to the allocated nodes. In a recent
paper [17], Alea has been used to study the suitability of current mainstream
scheduling algorithms such as FCFS and backfilling to accurately predict target
nodes where a waiting job will be executed. Such a prediction is crucial when data
is staged in advance or private file system is deployed prior actual computation
(while a job is still waiting). In this paper, we have demonstrated that current
schedulers relying on inaccurate user-provided runtime estimates are unable to
make reliable long-term predictions and even short-term predictions (less than
10 minutes ahead) are not possible for large fractions of jobs (~50% of jobs).

4.4 Improving Fairness in large HTC System

In 2019, Alea has been used to model and then reconfigure queue and quota setup
in a large HTC system. This system is shared by two different workloads—a
local user workload and a grid workload that comes from LHC experiments. The
motivation was to increase the fairness toward local users who often have to wait
much longer than those grid-originating jobs (roughly twice as long, on average).
In this work, the simulation speed of Alea was mostly important, since the HTC
system is rather large (33,456 cores), processing lots of jobs each month (~2.7
milions). Using Alea, we were able to model the system and evaluate new setups
for the system’s queues and the per-group CPU quotas. This new setup allowed
for improved fairness for local users, by better balancing their wait times with
the wait times of grid-originating jobs [2].

5 Conclusion and Future Work

This paper has presented the recently upgraded complex job scheduling simu-
lator Alea. We have demonstrated its capabilities and usefulness using real-life
examples. Importantly, we have shown that the simulator is capable to simulate
large systems and execute large workloads in an acceptable time frame. Alea can
be freely obtained at GitHub [1].

Acknowledgments. We acknowledge the support and computational resources
provided by the MetaCentrum under the program LM2015042, and the support
provided by the project Reg. No. CZ.02.1.01/0.0/0.0/16_013/0001797 co-funded
by the Ministry of Education, Youth and Sports of the Czech Republic.
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