Skip to main content

A Conjunction of the Discrete-Continuous Pedestrian Dynamics Model SigmaEva with Fundamental Diagrams

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

This article is focused on dynamics of the computer simulation module SigmaEva in connection with an unidirectional flow under periodic boundary conditions. The module SigmaEva realizes the discrete-continuous stochastic pedestrian dynamics model that is shortly presented here. A fundamental diagram (speed-density dependance) is an input for the model. Simulated specific flow rates are considered versus input ones for different diagrams. A sensitivity of the model to input diagrams is shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and below under “obstacle” we mean only nonmovable obstacles (walls, furniture). People are never called “obstacle”. There is unified coordinate system, and all data are given in this system.

  2. 2.

    We assume that free movement speed is random normal distributed value with some mathematical expectation and dispersion [13].

  3. 3.

    Mainly with value >0,9.

  4. 4.

    All the other initial data were the same for all simulation experiments, including the model parameters. Here we do not discus them and only present values \(k_P=9\), \(k_W=2\), \(k_S=40\).

References

  1. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Science, vol. 3, pp. 3142–3192. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3

    Chapter  Google Scholar 

  2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  3. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111 (2010)

    Article  Google Scholar 

  4. Zeng, W., Nakamura, H., Chen, P.: A modified social force model for pedestrian behavior simulation at signalized crosswalks. Soc. Behav. Sci. 138(14), 521–530 (2014)

    Article  Google Scholar 

  5. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B 35, 293–312 (2001)

    Article  Google Scholar 

  6. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech. Theor. Exp. 10, 10011 (2004)

    Article  Google Scholar 

  7. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87–D, 726–732 (2004)

    Google Scholar 

  8. Kirik, E., Yurgel’yan, T., Krouglov, D.: On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern. Syst. 42(1), 1–15 (2011)

    Article  Google Scholar 

  9. Seitz, M.J., Koster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86(4), 046108 (2012)

    Article  Google Scholar 

  10. Zeng, Y., Song, W., Huo, F., Vizzari, G.: Modeling evacuation dynamics on stairs by an extended optimal steps model. Simul. Model. Pract. Theor. 84, 177–189 (2018)

    Article  Google Scholar 

  11. Baglietto, G., Parisi, D.R.: Continuous-space automaton model for pedestrian dynamics. Phys. Rev. E 83(5), 056117 (2011)

    Article  Google Scholar 

  12. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern. Syst. 40(5), 367–389 (2009)

    Article  Google Scholar 

  13. Kholshevnikov, V.: Forecast of human behavior during fire evacuation. In: Proceedings of the International Conference “Emergency Evacuation of People From Buildings - EMEVAC”, pp. 139–153. Belstudio, Warsaw (2011)

    Google Scholar 

  14. Kirik, E., Malyshev, A., Popel, E.: Fundamental diagram as a model input: direct movement equation of pedestrian dynamics. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 691–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_58

    Chapter  Google Scholar 

  15. Predtechenskii, V.M., Milinskii, A.I.: Planing for Foot Traffic Flow in Buildings. American Publishing, New Dehli (1978). Translation of Proektirovanie Zhdanii s Uchetom organizatsii Dvizheniya Lyudskikh potokov. Stroiizdat Publishers, Moscow (1969)

    Google Scholar 

  16. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12, 393–405 (2009)

    Article  Google Scholar 

  17. Weidmann, U.: Transporttechnik der Fussgänger. Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). IVT, Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, Zürich (1992)

    Google Scholar 

  18. Nelson, H.E., Mowrer, F.W.: Emergency movement. In: DiNenno, P.J. (ed.) The SFPE Handbook of Fire Protection Engineering, pp. 3-367–3-380. National Fire Protection Association, Quincy (2002)

    Google Scholar 

  19. Kirik, E., Vitova, T., Malyshev, A., Popel, E.: On the validation of pedestrian movement models under transition and steady-state conditions. In: Proceedings of the Ninth International Seminar on Fire and Explosion Hazards (ISFEH9), St. Peterburg, pp. 1270–1280 (2019)

    Google Scholar 

  20. Peacock, R.D., Reneke, P.A., Davis, W.D., Jones, W.W.: Quantifying fire model evaluation using functional analysis. Fire Saf. J. 33(3), 167–184 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirik, E., Vitova, T., Malyshev, A., Popel, E. (2020). A Conjunction of the Discrete-Continuous Pedestrian Dynamics Model SigmaEva with Fundamental Diagrams. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics