Skip to main content

An Adaptive Strategy for Dynamic Data Clustering with the K-Means Algorithm

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

K-means algorithm is one of the most widely used methods in data mining and statistical data analysis to partition several objects in K distinct groups, called clusters, on the basis of their similarities. The main problem of this algorithm is that it requires the number of clusters as an input data, but in the real life it is very difficult to fix in advance such value. For such reason, several modified K-means algorithms are proposed where the number of clusters is defined at run time, increasing it in a iterative procedure until a given cluster quality metric is satisfied. In order to face the high computational cost of this approach we propose an adaptive procedure, where at each iteration two new clusters are created, splitting only the one with the worst value of the quality metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abubaker, M., Ashour, W.M.: Efficient data clustering algorithms: improvements over Kmeans. Int. J. Intell. Syst. Appl. 5, 37–49 (2013)

    Google Scholar 

  2. Aggarwal, C.C., Reddy, C.K.: Data Clustering, Algorithms and Applications. Chapman and Hall/CRC, London (2013)

    Book  Google Scholar 

  3. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid enabling, component based programming environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_100

    Chapter  Google Scholar 

  4. D’Ambra, P., Danelutto, M., diSerafino, D., Lapegna, M.: Advanced environments for parallel and distributed applications: a view of the current status. Parallel Comput. 28, 1637–1662 (2002)

    Article  Google Scholar 

  5. D’Ambra, P., Danelutto, M., diSerafino, D., Lapegna, M.: Integrating MPI-based numerical software into an advanced parallel computing environment. In: Proceedings of the Eleventh Euromicro Conference on Parallel Distributed and Network-based Processing, Clematis ed., pp. 283–291. IEEE (2003)

    Google Scholar 

  6. D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 25–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_3

    Chapter  Google Scholar 

  7. D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adaptive algorithms for multidimensional integration. Parallel Comput. 23, 1199–1210 (1997)

    Article  MathSciNet  Google Scholar 

  8. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2017). http://archive.ics.uci.edu/ml

  9. Duda, R., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Hoboken (1973). (Q327.D83)

    MATH  Google Scholar 

  10. Frey, P.W., Slate, D.J.: Letter recognition using holland-style adaptive classifiers. Mach. Learn. 6, 161–182 (1991)

    Google Scholar 

  11. Gan, D.G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  12. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled MPI library. Future Gener. Comput. Syst. 24, 158–165 (2008)

    Article  Google Scholar 

  13. Huang, Z.X.: Extensions to the K-means algorithm for clustering large datasets with categorical values. Data Min. Knowl. Disc. 2, 283–304 (1998)

    Article  Google Scholar 

  14. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3, 55–57 (2013)

    Google Scholar 

  15. Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for high-dimensional integrals on heterogeneous CPU-GPU systems. Concurr. Comput. Pract. Exp. 31, cpe4945 (2018)

    Google Scholar 

  16. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive algorithm for multidimensional integration on multicore based HPC Systems. Int. J. Parallel Program. 40, 397–409 (2012)

    Article  Google Scholar 

  17. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms for numerical quadrature on heterogeneous GPU and multicore based systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 704–713. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_66

    Chapter  Google Scholar 

  18. Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based priority queues in multicore environments. Int. J. Parallel Prog. 44, 901–921 (2016)

    Article  Google Scholar 

  19. Lapegna, M.: A global adaptive quadrature for the approximate computation of multidimensional integrals on a distributed memory multiprocessor. Concurr. Pract. Exp. 4, 413–426 (1992)

    Article  Google Scholar 

  20. Patibandla, R.S.M.L., Veeranjaneyulu, N.: Survey on clustering algorithms for unstructured data. In: Bhateja, V., Coello Coello, C.A., Satapathy, S.C., Pattnaik, P.K. (eds.) Intelligent Engineering Informatics. AISC, vol. 695, pp. 421–429. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7566-7_41

    Chapter  Google Scholar 

  21. Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for marine bathymetry processing with on-premises and cloud based computational resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78054-2_2

    Chapter  Google Scholar 

  22. Montella, R., et al.: Accelerating linux and android applications on low-power devices through remote GPGPU offloading. Concurr. Comput.: Pract. Exp. 29, cpe.4950 (2017)

    Article  Google Scholar 

  23. Pelleg, D., Moore. A.W.: X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference on Machine Learning, pp. 727–734. Morgan Kaufmann (2000)

    Google Scholar 

  24. Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognit. Lett. 20, 1027–1040 (1999)

    Article  Google Scholar 

  25. Shindler, M., Wong, A., Meyerson, A.: Fast and accurate k-means for large datasets. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (eds.) Proceedings of 25th Annual Conference on Neural Information Processing Systems, pp. 2375–2383 (2011)

    Google Scholar 

  26. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015). https://doi.org/10.1007/s40745-015-0040-1

    Article  MathSciNet  Google Scholar 

  27. Xu, R., Wunsch, D.: Survey of clustering algorithms. Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lapegna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lapegna, M., Mele, V., Romano, D. (2020). An Adaptive Strategy for Dynamic Data Clustering with the K-Means Algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics