Skip to main content

Parallel Performance of an Iterative Solver Based on the Golub-Kahan Bidiagonalization

  • Conference paper
  • First Online:
Book cover Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12043))

Abstract

We present an iterative method based on a generalization of the Golub-Kahan bidiagonalization for solving indefinite matrices with a 2 \(\times \) 2 block structure. We focus in particular on our recent implementation of the algorithm using the parallel numerical library PETSc. Since the algorithm is a nested solver, we investigate different choices for parallel inner solvers and show its strong scalability for two Stokes test problems. The algorithm is found to be scalable for large sparse problems.

M. Sosonkina—The work of the second author was supported in part by the U.S. National Science Foundation under grant CNS-1828593.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.code-aster.org.

  2. 2.

    https://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex70.c.html.

  3. 3.

    https://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html.

References

  1. Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/S0895479899358194

    Article  MathSciNet  MATH  Google Scholar 

  2. Arioli, M.: Generalized Golub-Kahan bidiagonalization and stopping criteria. SIAM J. Matrix Anal. Appl. 34(2), 571–592 (2013). https://doi.org/10.1137/120866543

    Article  MathSciNet  MATH  Google Scholar 

  3. Arioli, M., Kruse, C., Rüde, U., Tardieu, N.: An iterative generalized Golub-Kahan algorithm for problems in structural mechanics. CoRR (2018). http://arxiv.org/abs/1808.07677

  4. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., et al.: PETSc Web page (2019). http://www.mcs.anl.gov/petsc

  5. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., et al.: PETSc users manual. Technical report ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019). http://www.mcs.anl.gov/petsc

  6. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997). https://doi.org/10.1007/978-1-4612-1986-6_8

  7. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). https://doi.org/10.1017/S0962492904000212

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandt, A., Livne, O.E.: Multigrid techniques: 1984 guide with applications to fluid dynamics. SIAM 67 (2011). https://doi.org/10.1137/1.9781611970753

  9. Dongarra, J., et al.: Applied mathematics research for exascale computing. Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore (2014). https://doi.org/10.2172/1149042

  10. Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state navier-stokes equations. Numer. Math. 90(4), 665–688 (2002). https://doi.org/10.1007/s002110100

    Article  MathSciNet  MATH  Google Scholar 

  11. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, USA (2014). https://doi.org/10.1093/acprof:oso/9780199678792.001.0001

  12. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56026-2

    Book  MATH  Google Scholar 

  13. Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–521 (2016). https://doi.org/10.1016/j.jocs.2016.06.006

    Article  MathSciNet  Google Scholar 

  14. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency for parallel multigrid. Numer. Math.: Theory Methods Appl. 8(1), 22–46 (2015). https://doi.org/10.4208/nmtma.2015.w10si

  15. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indu. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965). https://doi.org/10.1137/0702016

  16. Golub, G.H., Greif, C.: On solving block-structured indefinite linear systems. SIAM J. Sci. Comput. 24(6), 2076–2092 (2003). https://doi.org/10.1137/S1064827500375096

    Article  MathSciNet  MATH  Google Scholar 

  17. Heroux, M.A., et al.: An overview of the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005). https://doi.org/10.1145/1089014.1089021

    Article  MathSciNet  MATH  Google Scholar 

  18. Klaij, C.: On the stabilization of finite volume methods with co-located variables for incompressible flow. J. Comput. Phys. 297(C), 84–89 (2015). https://doi.org/10.1016/j.jcp.2015.05.012

  19. Orban, D., Arioli, M.: Iterative solution of symmetric quasi-definite linear systems. SIAM Spotlights. Society for Industrial and Applied Mathematics (2017). https://doi.org/10.1137/1.9781611974737

  20. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982). https://doi.org/10.1145/355984.355989

    Article  MathSciNet  MATH  Google Scholar 

  21. Saunders, M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numer. Math. 35(4), 588–604 (1995). https://doi.org/10.1007/BF01739829

    Article  MathSciNet  MATH  Google Scholar 

  22. Saunders, M.A.: Computing projections with LSQR. BIT Numer. Math. 37(1), 96–104 (1997). https://doi.org/10.1007/BF02510175

    Article  MathSciNet  MATH  Google Scholar 

  23. Ur Rehman, M., Geenen, T., Vuik, C., Segal, G., MacLachlan, S.: On iterative methods for the incompressible stokes problem. Int. J. Numer. Meth. Fluids 65(10), 1180–1200 (2011). https://doi.org/10.1002/fld.2235

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Kruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kruse, C., Sosonkina, M., Arioli, M., Tardieu, N., Rüde, U. (2020). Parallel Performance of an Iterative Solver Based on the Golub-Kahan Bidiagonalization. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics