Skip to main content

An Area Efficient and Reusable HEVC 1D-DCT Hardware Accelerator

  • Conference paper
  • First Online:
  • 854 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12043))

Abstract

In this paper is presented an area efficient reusable architecture for integer one dimensional Discrete Cosine Transform (1D DCT) with adjustable transform sizes in High Efficiency Video Coding (HEVC). Optimization is based on exploiting of symmetry and subset properties of the transform matrix. The proposed multiply-accumulate architecture is fully pipelined and applicable for all transform sizes. It provides the interface over which the processing system can control the datapath of the transform process and the synchronization channel that enables the system to receive the feedback information about utilization from the device. An intuitive line approach for calculating transform coefficients for all transform sizes was used instead of the commonly applied recursive decomposition approach. This approach simplifies disabling of lines that are not employed for a particular transform size. The proposed architecture is implemented on the FPGA platform, can operate at 407,5 MHz, achieves throughput of 815 Msps and can support encoding of a 4K UHD@30 fps video sequence in real time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Telecommunication standardization sector of ITU: Recommendation ITU-T H.265 — International Standard ISO/IEC 23008-2. International Telecommunication Union, Geneva (2015)

    Google Scholar 

  2. Bossen, F., Flynn, D., Bross, B., Suhring, K.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012). https://doi.org/10.1109/TCSVT.2012.2221255

    Article  Google Scholar 

  3. Budagavi, M., Fuldseth, A., Bjøntegaard, G., Sze, V., Sadafale, M.: Core transform design in the high efficiency video coding (HEVC) standard. IEEE J. Sel. Top. Sign. Proces. 7(6), 1029–1041 (2013). https://doi.org/10.1109/JSTSP.2013.2270429

    Article  Google Scholar 

  4. Tikekar, M., Huang, C.-T., Juvekar, C., Chandrakasan, A.: Core transform property for practical throughput hardware design. Paper Presented at the 7th Meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Geneva, 21–30 November 2011

    Google Scholar 

  5. Fuldseth, A., Bjøntegaard, G., Sze, V., Budagavi, M.: Core transform design for HEVC. Paper Presented at the 7th Meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Geneva, 21–30 November 2011

    Google Scholar 

  6. Zhao, W., Onoye, T., Song, T.: High-performance multiplierless transform architecture for HEVC. In: IEEE International Symposium on Circuits and Systems, Beijing, pp. 1668–1671. IEEE (2013). https://doi.org/10.1109/ISCAS.2013.6572184

  7. Meher, P.K., Park, S.Y., Mohanty, B.K., Lim, K.S., Yeo, S.: Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(1), 168–178 (2014). https://doi.org/10.1109/TCSVT.2013.2276862

    Article  Google Scholar 

  8. Chatterjee, S., Sarawadekar, K.P.: A low cost, constant throughput and reusable 8X8 DCT architecture for HEVC. In: 59th International Midwest Symposium on Circuits and Systems, Abu Dhabi, pp. 1–4. IEEE (2016). https://doi.org/10.1109/MWSCAS.2016.7869994

  9. Bolaños-Jojoa, J.D., Velasco-Medina, J.: Efficient hardware design of N-point 1D-DCT for HEVC. In: 20th Symposium on Signal Processing, Images and Computer Vision, Bogota, pp. 1–6. IEEE (2015). https://doi.org/10.1109/STSIVA.2015.7330449

  10. Abdelrasoul, M., Sayed, M.S., Goulart, V.: Scalable integer DCT architecture for HEVC encoder. In: IEEE Computer Society Annual Symposium on VLSI, Pittsburgh, pp. 314–318. IEEE (2016). https://doi.org/10.1109/ISVLSI.2016.98

  11. Sjövall, P., Viitamäki, V., Vanne, J., Hämäläinen, T.D.: High-level synthesis implementation of HEVC 2-D DCT/DST on FPGA. In: IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, pp. 1547–1551. IEEE (2017). https://doi.org/10.1109/ICASSP.2017.7952416

  12. Arayacheeppreecha, P., Pumrin, S., Supmonchai, B.: Flexible input transform architecture for HEVC encoder on FPGA. In: 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Hua Hin, pp. 1–6. IEEE (2015). https://doi.org/10.1109/ECTICon.2015.7206947

  13. Abdelrasoul, M., Sayed, M.S., Goulart, V.: Real-time unified architecture for forward/inverse discrete cosine transform in high efficiency video coding. IET Circuits Devices Syst. 11(4), 381–387 (2017). https://doi.org/10.1049/iet-cds.2016.0423

    Article  Google Scholar 

  14. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves. Paper Presented at the 16th Meeting of the Video Coding Experts Group (VCEG), Austin, 2–4 April 2001

    Google Scholar 

  15. Renda, G., Masera, M., Martina, M., Masera, G.: Approximate Arai DCT architecture for HEVC. In: New Generation of CAS, Genova, pp. 133–136. IEEE (2017). https://doi.org/10.1109/NGCAS.2017.38

  16. Tummeltshammer, P., Hoe, J.C., Puschel, M.: Time-multiplexed multiple-constant multiplication. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(9), 1551–1563 (2007). https://doi.org/10.1109/TCAD.2007.893549

    Article  Google Scholar 

  17. Spiral Project: Multiplexed Multiplier Block Generator. http://spiral.net/hardware/mmcm.html. Accessed 10 Dec 2018

  18. Hong, L., Weifeng, H., Zhu, H., Mao, Z.: A cost effective 2-D adaptive block size IDCT architecture for HEVC standard. In: 56th International Midwest Symposium on Circuits and Systems, Columbus, pp. 1290–1293. IEEE (2013). https://doi.org/10.1109/MWSCAS.2013.6674891

Download references

Acknowledgements

The work presented in this paper has been partially funded by the European Processor Initiative project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 826647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mate Cobrnic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cobrnic, M., Duspara, A., Dragic, L., Piljic, I., Mlinaric, H., Kovac, M. (2020). An Area Efficient and Reusable HEVC 1D-DCT Hardware Accelerator. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics