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Abstract. In this paper, we present the StarNEig library for solving
dense non-symmetric (generalized) eigenvalue problems. The library is
built on top of the StarPU runtime system and targets both shared and
distributed memory machines. Some components of the library support
GPUs. The library is currently in an early beta state and only real arith-
metic is supported. Support for complex data types is planned for a
future release. This paper is aimed for potential users of the library. We
describe the design choices and capabilities of the library, and contrast
them to existing software such as ScaLAPACK. StarNEig implements
a ScaLAPACK compatibility layer that should make it easy for a new
user to transition to StarNEig. We demonstrate the performance of the
library with a small set of computational experiments.
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1 Introduction

In this paper, we present the StarNEig library [1] for solving dense non-symmetric
(generalized) eigenvalue problems. StarNEig differs from the existing libraries
such as LAPACK and ScaLAPACK in that it is relies on a modern task-based
approach. More specifically, StarNEig is build on top of the StarPU runtime
system [2]. This allows StarNEig to target both shared memory and distributed
memory machines. Furthermore, some components of the StarNEig library sup-
port GPUs. The library is currently in an early beta state and under under
continuous development.

This paper targets potential users of the library. We hope that readers, who
are already familiar with ScaLAPACK, will be able to decide if StarNEig is suit-
able for them. In particular, we want to communicate what type of changes are
necessary to make their software work with StarNEig. We will explain, through
an example, why the task-based approach can potentially lead to superior per-
formance when compared to older, but well-established, approaches. We also
present a small sample of computational results which demonstrate the expected
performance of the library. We refer the reader to [13] for more comprehensive
performance and accuracy evaluations.
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The rest of this paper is organized as follows: Section 2 provides a brief
introduction to the solution of dense eigenvalue problems. Section 3 explains the
task-based approach and Section 4 introduces the reader to some of the inner
workings of StarNEig. Section 5 presents a small set of computational results
and, finally, Section 6 concludes the paper.

2 Solution of Dense Nonsymmetric Eigenvalue Problems

Given a matrix A ∈ Rn×n, the standard eigenvalue problem consists of comput-
ing eigenvalues λi ∈ C and matching eigenvectors xi ∈ Cn such that

Axi = λixi, xi 6= 0. (1)

Similarly, given matrices A ∈ Rn×n and B ∈ Rn×n the generalized eigenvalue
problem for the matrix pair (A,B) consists of computing generalized eigenvalues
λi ∈ C and matching generalized eigenvectors xi ∈ Cn such that

Axi = λiBxi, xi 6= 0. (2)

If the matrix A or the matrices A and B are dense and nonsymmetric, then
route of acquiring the (generalized) eigenvalues and the (generalized) eigenvec-
tors usually includes the following three steps:

Hessenberg(-triangular) reduction: The matrix A or the matrix pair (A,B)
is reduced to upper Hessenberg or Hessenberg-triangular form by an orthog-
onal similarity transformation

A = Q1HQ
T
1 or (A,B) = Q1(H,R)ZT

1 , (3)

where H is upper Hessenberg, R is a upper triangular, and Q1 and Z1 are
orthogonal.

Schur reduction: The Hessenberg matrix H or the Hessenberg-triangular ma-
trix pair (H,R) is reduced to Schur or generalized Schur form by an orthog-
onal similarity transformation

H = Q2SQ
T
2 or (H,R) = Q2(S, T )ZT

2 , (4)

where S is upper quasi-triangular with 1×1 and 2×2 blocks on the diagonal,
T is a upper triangular, and Q2 and Z2 are orthogonal. The eigenvalues or
generalized eigenvalues can be determined from the diagonal blocks of S or
(S, T ).

Eigenvectors: Finally, we compute vectors yi ∈ Cn from

(S − λiI)yi = 0 or (S − λiT )yi = 0 (5)

and backtransform to the original basis by

xi = Q1Q2yi or xi = Z1Z2yi. (6)
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Additionally, a fourth step can be performed to acquire a desired invariant sub-
space of A or (A,B):

Eigenvalue reordering: The Schur form S or the generalized Schur form (S, T )
is reordered, such that a selected set of eigenvalues or generalized eigenvalues
appears in the leading diagonal blocks of an updated Schur form Ŝ or an
updated generalized Schur form (Ŝ, T̂ ), by an orthogonal similarity transfor-
mation

S = Q3ŜQ
T
3 or (S, T ) = Q3(Ŝ, T̂ )ZT

3 , (7)

where Q3 and Z3 are orthogonal.

See [4] for a detailed explanation of the underlying mathematical theory.

3 A Case for the Task-Based Approach

A task-based algorithm functions by cutting the computational work into self-
contained tasks that all have a well defined set of inputs and outputs. The algo-
rithm inserts the tasks into a runtime system that derives the task dependences
and schedules the tasks to computational resources in a sequentially consistent
order. As long as the cutting is carefully done, the underlying parallelism is
exposed automatically as the runtime system unravels the resulting task graph.

3.1 Novelty in StarNEig

The first main source of novelty in StarNEig comes from the way in which the
computational work is cut into tasks. As with many other task-based matrix
algorithms, the matrices are divided into (square) tiles and each task takes a set
of tiles as its input and produces/modifies a set of tiles as its output. The Hes-
senberg reduction, Schur reduction and eigenvalue reordering steps are based on
two-sided transformation algorithms. These algorithms lead to data dependences
that are much more complicated than the dependences arising from one-sided
transformation algorithm such as the LU factorization. The second main source
of novelty in StarNEig is related to the eigenvector computation step. Here, the
data dependences are comparatively simple but the computations must be pro-
tected against floating-point overflow. This is a nontrivial issue to address in a
parallel setting; see [7,8,9].

Furthermore, the Schur reduction and eigenvalue reordering steps apply a se-
ries of overlapping local transformations to the matrices. Due to this overlap, the
two computational steps cannot have have a clear one-to-one mapping between
the tasks and the (output) tiles since the local transformations must at some
point cross between two or more tiles. Instead, most task ends up modifying
several tiles and this can introduce spurious data dependences1 that limit the
concurrency.

1 A spurious data dependency is created when two (or more) tasks modify non-
overlapping parts of the same tile but the runtime system interprets this as a true
data dependency.
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(a) Scalar updates. (b) Accumulated updates.

(c) ScaLAPACK. (d) StarNEig.

Fig. 1: Hypothetical snapshots taken during the computations. Active regions
are highlighted with darker shade and the propagation directions of the trans-
formations are marked with arrows. In (a) and (b), the overlap between two
(accumulated) transformations is highlighted with dashed lines. In (c) and (d),
the dashed lines illustrate how the matrix is divided into distributed blocks and
the solid lines illustrate the MPI process mesh.

3.2 Bulge Chasing and Eigenvalue Reordering

We will now use the Schur reduction and eigenvalue reordering steps to illustrate
some benefits of the task-based approach. The modern approach for obtaining
a Schur form S of A is to apply the multishift QR algorithm with Aggressive
Early Deflation (AED) to the upper Hessenberg form H (see [6] and references
therein). The algorithm is a sequence of steps of two types: AED and bulge
chasing. The bulge chasing step creates a set of bulges which are chased down
the diagonal to complete one pipelined QR iteration. This is accomplished by
applying sequences of overlapping 3 × 3 Householder reflectors to H. Similarly,
the eigenvalue reordering step is based on applying sequences of overlapping
Givens rotations and 3× 3 Householder reflectors to S.

If the local transformations are applied one by one, then memory is accessed
as shown in Fig. 1a. This is grossly inefficient for two reasons: i) the transforma-
tion is so localized that parallelizing it would not produce any speedup and ii)
the matrix elements are touched only once thus leading to very low arithmetic in-
tensity. The modern approach groups a set of local transformation together and
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Fig. 2: A hypothetical task graph arising from a situation where a Schur form is
reordered with a single chain of diagonal windows. We have simplified the graph
by leaving out the dependences between the right (R) and left (L) update tasks
as these dependences are already enforced through the window tasks (W).

initially applies them to a relatively small diagonal window as shown in Fig. 1b.
The local transformations are accumulated into an accumulator matrix and later
applied as level-3 BLAS operations acting on the relevant sections of the ma-
trix. This leads to much higher arithmetic intensity and enables proper parallel
implementations as multiple diagonal windows can be processed simultanously.

In particular, the Schur reduction and eigenvalue reordering steps are imple-
mented in ScaLAPACK as PDHSEQR [6] and PDTRSEN [5] subroutines, re-
ceptively. Following a typical ScaLAPACK formula, the matrices are distributed
in two-dimensional block cyclic fashion. The resulting memory access pattern is
illustrated in Fig. 1c for a 3× 3 MPI process mesh. In this particular example,
three diagonal windows can be processed simultaneously. The related level-3
BLAS updates require careful coordination since the left and right hand side
updates must be performed in a sequentially consistent order. In practice, this
means (global or broadcast) synchronization after each set of (left or right hand
side) updates have been applied.

In a task-based approach, this can be done using the following task types:

Window task applies a set of local transformations inside the diagonal window.
Takes the intersecting tiles as input, and produces updated tiles and an
accumulator matrix as output.

Right update task applies accumulated right-hand side updates using level-3
BLAS operations. Takes the intersecting tiles and an accumulator matrix as
input, and produces updated tiles as output.

Left update task applies accumulated left-hand side updates using level-3 BLAS
operations. Takes the intersecting tiles and an accumulator matrix as input,
and produces updated tiles as output.

The tasks are inserted in a sequentially consistent order and each window
chain leads to a task graph like the one shown in Fig. 2. It is critical to realize
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Table 1: Current status of the StarNEig library.
Step Shared memory Distr. memory GPUs

Hessenberg Complete ScaLAPACK Single GPU
Schur Complete Complete Experimental
Reordering Complete Complete Experimental
Eigenvectors Complete In progress Not planned

Hessenberg-triangular Planned (LAPACK) ScaLAPACK Not planned
Generalized Schur Complete Complete Experimental
Generalized reordering Complete Complete Experimental
Generalized eigenvectors Complete In progress Not planned

that the runtime system guarantees that the tasks are executed in a sequentially
consistent order. In particular, there is no need for synchronization and different
stages are allowed to overlap as illustrated in Fig. 1d. This leads to much higher
concurrency. Under suitable conditions, the AED step can also be partially over-
lapped with the bulge chasing step. Other benefits of the task-based approach
include, for example, better load balancing, task priorities, accelerators support
and implicit MPI communication. See [10,11,12,13] for implementation details
and further information.

4 StarNEig Library

StarNEig is a C-library that runs on top of the StarPU task-based runtime sys-
tem. StarPU handles low-level operations such as heterogeneous scheduling, data
transfers and replication between various memory spaces, and MPI communica-
tion between compute nodes. In particular, StarPU is responsible for managing
the various computational resources such as CPU cores and GPUs. In order to
accomplish this, StarPU creates a set of worker threads; usually one thread per
computational resource. In addition, one thread is responsible for inserting the
tasks and tracking the state of the machine. If necessary, one additional thread
is allocated for MPI communication. Thus, StarNEig should be used in a one
process per node (1ppn) configuration, i.e., several CPU cores should be allo-
cated for each process (a node can be a full compute node, a NUMA island or
some other collection of CPU cores).

The current status of the StarNEig library is summarized in Table 1. The
library is currently in an early beta state. At the time of writing this paper, only
real arithmetic is supported and certain interface functions are implemented
as LAPACK and ScaLAPACK wrapper functions. The library is under continu-
ous development. In particular, additional distributed memory functionality and
support for complex data types are planned for a future release.

4.1 Distributed Memory

StarNEig distributes the matrices in rectangular blocks of a uniform size (ex-
cluding the last block row and column) as illustrated in Fig. 3a. The data dis-
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(a) Distributed blocks.
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(c) 2D-BCD mapping.

Fig. 3: Examples of various data distributions supported by StarNEig, including
two-dimensional block cyclic distribution (2D-BCD).

tribution, i.e., the mapping from the distributed blocks to the MPI process rank
space, can be arbitrary as illustrated in Fig. 3b. A user has three options:

1. Use the default data distribution. This is recommended for most users and
leads to reasonable performance in many cases.

2. Use a two-dimensional block cyclic distribution (see Fig. 3c). In this case,
the user may select the MPI process mesh dimensions and the rank ordering.

3. Define a data distribution function d : Z+ × Z+ → Z+ that maps the block
row and column indices to the MPI rank space. For example, in Fig. 3b, the
rank 0 owns the blocks (0,1), (1,2), (1,5), (1,6), (2,6), (3,0) and (3,5).

The library implements distribution agnostic copy, scatter and gather operations.

Users who are familiar with ScaLAPACK are likely accustomed to using rel-
atively small distributed block sizes (between 64–256). In contrast, StarNEig
functions optimally only if the distributed blocks are relatively large (at least
1000). This is due to the fact that StarNEig further divides the distributed blocks
into tiles and a tiny tile size leads to excessive task scheduling overhead because
the tile size is closely connected to the task granularity. Furthermore, as men-
tioned in the preceding section, StarNEig should be used in 1ppn configuration
as opposed to a one process per core (1ppc) configuration which is more common
with ScaLAPACK.

4.2 ScaLAPACK Compatibility

StarNEig is fully compatible with ScaLAPACK and provides a ScaLAPACK
compatibility layer that encapsulates BLACS contexts and descriptors [3] inside
transparent objects, and implements a set of bidirectional conversion functions.
The conversions are performed in-place and do not modify any of the under-
lying data structures. Thus, users can mix StarNEig interface functions with
ScaLAPACK subroutines without intermediate conversions.
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Table 2: A run time comparison between ScaLAPACK and StarNEig.
CPU cores Schur reduction (secs) Eigenvalue reordering (secs)

n ScaLAPACK StarNEig PDHSEQR StarNEig PDTRSEN StarNEig

10 000 36 28 38 18 12 3
20 000 36 28 158 85 72 25
40 000 36 28 708 431 512 180
60 000 121 112 992 563 669 168
80 000 121 112 1667 904 1709 391

100 000 121 112 3319 1168 3285 737
120 000 256 252 3268 1111 2902 581
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Fig. 4: Distributed memory scalability when computing a Schur form (upper
figure) and reordering a Schur form (bottom figure). Each node contains 28
CPU cores.
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5 Performance Evaluation

All computational experiments were performed on the Kebnekaise system, lo-
cated at the High Performance Computing Center North (HPC2N), Ume̊a Uni-
versity. Each compute node contains 28 Intel Xeon E5-2690v4 cores (2 NUMA
islands with 14 cores each) and 128 GB memory. The nodes are connected with
FDR Infiniband. The software was compiled with GCC 7.3.0 and linked to Open-
MPI 3.1.3, OpenBLAS 0.3.2, ScaLAPACK 2.0.2, and StarPU 1.2.8. All exper-
iments were performed using a square MPI process grid. We always map each
StarNEig process to a full node (28 cores) and each ScaLAPACK process to a
single CPU core. The number of CPU cores in each ScaLAPACK experiment
is always equal or larger than the number of CPU cores in the corresponding
StarNEig experiment. The upper Hessenberg matrices for the Schur reduction
experiments were computed from random matrices (entries uniformly distributed
over the interval [−1, 1]).

Table 2 shows a comparison between ScaLAPACK and StarNEig. We note
that StarNEig is between 1.6 and 2.9 times faster than PDHSEQR and between
2.8 and 5.0 times faster than PDTRSEN. Figure 4 gives some idea of how well
the library is expected to scale in distributed memory. We note that StarNEig
scales reasonably when computing the Schur form and almost linearly when
reordering the Schur form. The iterative nature of the QR algorithm makes
the Schur reduction results less predictable. See [11,13] for more comprehensive
comparisons.

6 Summary

This paper presented a new library called StarNEig. The paper is aimed for
potential users of the library. Various design choices were explained and con-
trasted to existing software. In particular, users who are already familiar with
ScaLAPACK should know following:

– StarNEig expect that the matrices are distributed in relatively large blocks
compared to ScaLAPACK.

– StarNEig should be used in a one process per node (1ppn) configuration as
opposed to a one process per core (1ppc) configuration which is very common
with ScaLAPACK.

– StarNEig implements a ScaLAPACK compatibility layer.

The presented distributed memory results indicate that the library is highly
competitive with ScaLAPACK. The authors hope to start a discussion which
would help guide and prioritize the future development of the library.
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