Skip to main content

A Novel Feature Selection Model for JPEG Image Steganalysis

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12022))

Included in the following conference series:

  • 1380 Accesses

Abstract

Image steganalysis is a very important research topic in the field of information security. The existing feature based image steganalysis methods have achieved the appealing performance. The performance of them greatly depends on the quality of the hand-crafted steganalysis feature vectors, such as Cartesian Calibration PEV (CC-PEV), DCT Residuals (DCTR), and so on. However, these feature vectors may contain some redundant elements that will reduce the discrimination power and increase the computation cost. In this paper, a novel feature selection model is proposed for JPEG image steganalysis. Specifically, the proposed model imposes an \(l_{2,1}\)-structural constraint on the projection matrix for feature selection. Further, to make the model insensitive to noises and outliers, a capped \(l_2\)-norm based loss function is adopted. Moreover, a graph-based manifold regularization term which exploits the intrinsic local geometric structure of the data is added into the objective function to select the effective feature elements. Finally, an alternately iterative optimization algorithm with proven convergence is given to solve the proposed model. The extensive experiments on three state-of-the-art JPEG steganographic algorithms with 0.1 and 0.2 embedding rates and two JPEG quality factors show that the proposed model can effectively remove some irrelevant and redundant elements meanwhile retaining high detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  2. Denemark, T., Fridrich, J.: Steganography with multiple JPEG images of the same scene. IEEE Trans. Inf. Forensics Secur. 12(10), 2308–2319 (2017)

    Article  Google Scholar 

  3. Kodovský, J., Fridrich, J.: Calibration revisited. In: 11th Multimedia and Security Workshop (MMSec), New Jersey, USA, pp. 63–74. ACM (2009)

    Google Scholar 

  4. Kodovský, J., Fridrich, J.: Steganalysis of JPEG images using rich models. In: SPIE 8303, Media Watermarking, Security, and Forensics, p. 83030A. SPIE (2012)

    Google Scholar 

  5. Holub, V., Fridrich, J.: Low complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2015)

    Article  Google Scholar 

  6. Song, X., Liu, F., Yang, C., Luo, X., Zhang, Y.: Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: 3rd ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), Portland, Oregon, USA, pp. 15–23. ACM (2015)

    Google Scholar 

  7. Xia, C., Guan, Q., Zhao, X., Xu, Z., Ma, Y.: Improving GFR steganalysis features by using Gabor symmetry and weighted histograms. In: 5th ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), Philadelphia, Pennsylvania, USA, pp. 55–66. ACM (2017)

    Google Scholar 

  8. Mohammadi, F.G., Abadeh, M.S.: Image steganalysis using a bee colony based feature selection algorithm. Eng. Appl. Artif. Intell. 31, 35–43 (2014)

    Article  Google Scholar 

  9. Chhikara, R.R., Sharma, P., Singh, L.: A hybrid feature selection approach based on improved PSO and filter approaches for image steganalysis. Int. J. Mach. Learn. Cybern. 7(6), 1195–1206 (2016). https://doi.org/10.1007/s13042-015-0448-0

    Article  Google Scholar 

  10. Adeli, A., Broumandnia, A.: Image steganalysis using improved particle swarm optimization based feature selection. Appl. Intell. 48, 1609–1622 (2018). https://doi.org/10.1007/s10489-017-0989-x

    Article  Google Scholar 

  11. Pathak, Y., Arya, K.V., Shailendra, T.: Feature selection for image steganalysis using levy flight-based grey wolf optimization. Multimedia Tools Appl. 78, 1473–1494 (2019). https://doi.org/10.1007/s11042-018-6155-6

    Article  Google Scholar 

  12. Ma, Y., Luo, X., Li, X., Bao, Z., Zhang, Y.: Selection of rich model steganalysis features based on decision rough set \(\alpha \)-positive region reduction. IEEE Trans. Circuits Syst. Video Technol. 29(2), 336–350 (2018)

    Article  Google Scholar 

  13. Du, A., Ma, Y., Li, S., Ma, Y.: Robust unsupervised feature selection via matrix factorization. Neurocomputing 241, 115–127 (2017)

    Article  Google Scholar 

  14. Lan, G., Hou, C., Nie, F., Luo, T., Yi, D.: Robust feature selection via simultaneous capped norm and sparse regularizer minimization. Neurocomputing 283, 228–240 (2018)

    Article  Google Scholar 

  15. Tang, C., Liu, X., Li, M.: Robust unsupervised feature selection via dual self-representation and manifold regularization. Knowl. Based Syst. 145, 109–120 (2018)

    Article  Google Scholar 

  16. Zheng, W., Yan, H., Yang, J., Yang, J.: Robust unsupervised feature selection by nonnegative sparse subspace learning. Neurocomputing 334, 156–171 (2019)

    Article  Google Scholar 

  17. Yang, M., Cheng, D., Nie, F.: Adaptive-weighting discriminative regression for multi-view classification. Pattern Recogn. 88, 236–245 (2019)

    Article  Google Scholar 

  18. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \(L_{2,1}\)-norms minimization. In: 23rd International Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, pp. 1813–1821. Curran Associates Inc. (2010)

    Google Scholar 

  19. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)

    Article  Google Scholar 

  20. Huang, S., Zhao, K., Xu, Z.: Self-weighted multi-view clustering with soft capped norm. Knowl. Based Syst. 158, 1–8 (2018)

    Article  Google Scholar 

  21. Kodovský, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  22. Fridrich, J., Pevný, T., Kodovsky, J.: Statistically undetectable JPEG steganography: dead ends challenges, and opportunities. In: 9th Multimedia and Security Workshop (MMSec), Dallas, Texas, USA, pp. 3–14. ACM (2007)

    Google Scholar 

  23. Guo, L., Ni, J., Shi, Y.Q.: Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)

    Article  Google Scholar 

  24. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1–13 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant No. 61872368). The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhong .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1. According to the step \(\mathbf {1}\) of Algorithm 1 in the t-th iteration and Eq. (11), we have

$$\begin{aligned} W_{(t+1)}&=\hbox {arg}\min _W \sum _{i=1}^n u_i\Vert W^T \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T X) L (W^T X)^T]+\lambda _2\Vert W\Vert _{2,1}\nonumber \\&=\hbox {arg}\min _W \sum _{i=1}^n u_i\Vert W^T \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T X) L (W^T X)^T]\nonumber \\&\quad +\,\lambda _2tr(W^T D_{(t)} W) \end{aligned}$$
(17)

which indicates that

$$\begin{aligned}&\sum _{i=1}^n u_i\Vert W^T_{(t+1)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t+1)} X)L (W^T_{(t+1)} X)^T ]\nonumber \\&\quad +\,\lambda _2tr(W^T_{(t+1)} D_{(t)} W_{(t+1)})\nonumber \\&\le \sum _{i=1}^n u_i\Vert W^T_{(t)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t)} X) L (W^T_{(t)} X)^T]\nonumber \\&\quad +\,\lambda _2tr(W^T_{(t)} D_{(t)} W_{(t)}) \end{aligned}$$
(18)

According to Eq. (12), the following equations hold:

$$\begin{aligned} tr(W^T_{(t+1)} D_{(t)} W_{(t+1)})&=\sum _{i=1}^d\frac{\Vert \varvec{w}^i_{(t+1)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2}\end{aligned}$$
(19)
$$\begin{aligned} tr(W^T_{(t)} D_{(t)} W_{(t)})&=\sum _{i=1}^d\frac{\Vert \varvec{w}^i_{(t)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2} \end{aligned}$$
(20)

Thus, Eq. (18) can be transformed into the following form:

$$\begin{aligned}&\sum _{i=1}^n u_i\Vert W^T_{(t+1)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t+1)} X) L (W^T_{(t+1)} X)^T]+\lambda _2 \sum _{i=1}^d\frac{\Vert \varvec{w}^i_{(t+1)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2}\nonumber \\&\le \sum _{i=1}^n u_i\Vert W^T_{(t)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t)} X) L (W^T_{(t)} X)^T]+\lambda _2\sum _{i=1}^d\frac{\Vert \varvec{w}^i_{(t)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2} \end{aligned}$$
(21)

Further, the above inequality can be rewritten as

$$\begin{aligned}&\sum _{i=1}^n u_i\Vert W^T_{(t+1)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t+1)} X) L (W^T_{(t+1)} X)^T]\nonumber \\&\quad +\,\lambda _2 \sum _{i=1}^d\left( \frac{\Vert \varvec{w}^i_{(t+1)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2}+\Vert \varvec{w}^i_{(t+1)}\Vert _2-\Vert \varvec{w}^i_{(t+1)}\Vert _2\right) \nonumber \\&\le \sum _{i=1}^n u_i\Vert W^T_{(t)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t)} X) L (W^T_{(t)} X)^T]\nonumber \\&\quad +\,\lambda _2\sum _{i=1}^d\left( \frac{\Vert \varvec{w}^i_{(t)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2}+\Vert \varvec{w}^i_{(t)}\Vert _2-\Vert \varvec{w}^i_{(t)}\Vert _2\right) \end{aligned}$$
(22)

By replacing a and b in Lemma 1 with \(\Vert \varvec{w}^i_{(t+1)}\Vert _2^2\) and \(\Vert \varvec{w}^i_{(t)}\Vert _2^2\), we get

$$\begin{aligned}&\Vert \varvec{w}^i_{(t+1)}\Vert _2 - \frac{\Vert \varvec{w}^i_{(t+1)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2}\le \Vert \varvec{w}^i_{(t)}\Vert _2 - \frac{\Vert \varvec{w}^i_{(t)}\Vert _2^2}{2\Vert \varvec{w}^i_{(t)}\Vert _2} \end{aligned}$$
(23)

By adding Eqs. (22) and (23) on both sides (note that Eq. (23) is repeated for \(1\le i \le d\)), we have

$$\begin{aligned}&\sum _{i=1}^n u_i\Vert W^T_{(t+1)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t+1)} X) L (W^T_{(t+1)} X)^T]+\lambda _2 \sum _{i=1}^d\Vert \varvec{w}^i_{(t+1)}\Vert _2\nonumber \\&\le \sum _{i=1}^n u_i\Vert W^T_{(t)} \varvec{x}_i-\varvec{y}_i\Vert _2 + \lambda _1tr[(W^T_{(t)} X) L (W^T_{(t)} X)^T]+\lambda _2\sum _{i=1}^d\Vert \varvec{w}^i_{(t)}\Vert _2 \end{aligned}$$
(24)

That is to say,

$$\begin{aligned} Obj(t+1)\le Obj(t) \end{aligned}$$
(25)

Since the values of objective function (7) decrease monotonously and are greater than zeros, so Algorithm 1 is convergent. Theorem 1 is proven.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Zhong, J., Zhong, P., Xue, Y., Wen, J. (2020). A Novel Feature Selection Model for JPEG Image Steganalysis. In: Wang, H., Zhao, X., Shi, Y., Kim, H., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2019. Lecture Notes in Computer Science(), vol 12022. Springer, Cham. https://doi.org/10.1007/978-3-030-43575-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43575-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43574-5

  • Online ISBN: 978-3-030-43575-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics