
Evolving Instinctive Behaviour in
Resource-Constrained Autonomous Agents

Using Grammatical Evolution

Ahmed Hallawa1, Simon Schug1, Giovanni Iacca2, and Gerd Ascheid1

1 Chair for Integrated Signal Processing Systems
RWTH Aachen University, 52056, Aachen, Germany
{hallawa,schug,ascheid}@ice.rwth-aachen.de

2 Department of Information Engineering and Computer Science,
University of Trento, Povo 38123, Italy

giovanni.iacca@unitn.it

Abstract. Recent developments in the miniaturization of hardware have
facilitated the use of robots or mobile sensory agents in many appli-
cations such as exploration of GPS-denied, hardly accessible unknown
environments. This includes underground resource exploration and wa-
ter pollution monitoring. One problem in scaling-down robots is that it
puts significant emphasis on power consumption due to the limited en-
ergy available online. Furthermore, the design of adequate controllers for
such agents is challenging as representing the system mathematically is
difficult due to complexity. In that regard, Evolutionary Algorithms (EA)
is a suitable choice for developing the controllers. However, the solution
space for evolving those controllers is relatively large because of the wide
range of the possible tunable parameters available on the hardware, in
addition to the numerous number of objectives which appear on different
design levels. A recently-proposed method, dubbed as Instinct Evolution
Scheme (IES), offered a way to limit the solution space in these cases.
This scheme uses Behavior Trees (BTs) to represent the robot behaviour
in a modular, re-usable and intelligible fashion. In this paper, we improve
upon the original IES by using Grammatical evolution (GE) to imple-
ment a full BT evolution model integratable with IES. A special emphasis
is put on minimizing the complexity of the BT generated by GE. To test
the scheme, we consider an environment exploration task on a virtual
environment. Results show 85% correct reactions to environment stimuli
and a decrease in relative complexity to 4.7%. Finally, the evolved BT is
represented in an if-else on-chip compatible format.

Keywords: Grammatical Evolution · Behavior Tree ·Autonomous Agents.

1 Introduction

Resource-constrained miniaturized autonomous robots (or sensory agents) are
becoming available on a wide scale. Their compact dimensions enable flexible
usage in a wide range of applications ranging from monitoring of underground

2 Hallawa et al.

infrastructure [1] and exploration of natural resources, such as oil and gas, to
human body diagnostics [2]. However, the available energy on these robots is
restricted by their scaled-down size, which puts a special emphasis on the re-
duction of power consumption. In many cases, the agents are kinetically passive
and exposed to noisy and dynamically changing environments, thus requiring
robust behaviors capable of dealing with uncertainty [3]. Consequently, sophis-
ticated methods are required in order to develop adaptive behaviors that em-
power these robots to collaboratively achieve a given set of objectives with such
limited hardware resources. Evolvable hardware addresses this problem by au-
tonomously reconfiguring hardware using Evolutionary Algorithms (EAs) [4]. In-
spired by the biological process of evolution, EAs are a class of meta-heuristics
which are well-suited for dealing with complex search spaces. They have proven
to be useful in a wide range of applications [5], especially in situations where
conventional optimization techniques can not find satisfactory solutions due to
a lack of a priori knowledge of the problem under investigation. Broadly speak-
ing, two kinds of approaches have been proposed to apply EA to reconfigurable
hardware, namely extrinsic and intrinsic evolution. In extrinsic evolution, can-
didate solutions are evaluated using a virtual simulation of the corresponding
hardware behavior. Consequently, a static hardware configuration is generated
by the algorithm and, subsequently, flashed onto the target device. By contrast,
intrinsic evolution refers to approaches that conduct fitness measurements by
implementing each candidate solution on the device and observe its behavior.
As this eliminates the need for complex simulation environments, the validity
of this method is enhanced [6]. However, both extrinsic and intrinsic evolu-
tion show some limitations when it comes to the learning process of an agent’s
behavior. Extrinsic evolution suffers from the inability to adapt the final so-
lution to changes in the problem definition after it has been deployed on the
hardware. Though intrinsic evolution is capable to overcome this drawback by
continuously adapting the agent, it requires extensive computational power that
is not available in miniaturized robots, due to their scaled-down size. In this
work we progress on this research area by proposing and verifying a Behaviour
Trees (BTs) evolution model integratable with an EA recently proposed in the
literature, the Instinctive Evolution Scheme (IES) [7], with the purpose of evolv-
ing a behaviour suitable for resource-constrained autonomous robots or sensory
agents. The rest of the paper is structured as follows: in Section 2 a background
on different behaviour schemes in robotics is given, followed by an introduction
to IES. Section 3 introduces the proposed model based on BTs and IES. Finally,
Sections 4, 5 and 6 discuss the case study used to verify the model, the results
from our experiments, and conclusion respectively.

2 Background

Representing Behaviour: Representation of a behaviour is critical for its de-
velopment and optimization. In many applications in robotics, Artificial Neural
Networks (ANNs) are used to encode adaptive behavior. ANNs are capable of

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 3

performing complex computational tasks and can easily be combined with EAs.
Consequently, there have been numerous successful attempts of evolving robot
controllers using ANNs, e.g. [8]. Though ANNs are powerful, they are generally
treated as a black box. Understanding and validating the inner workings of a
successfully evolved controller, thus becomes a very difficult task. Furthermore,
even subtle changes in the specifications of the controller require retraining algo-
rithms as it is unfeasible to manually adapt a completed controller. On the other
hand, one alternative is Finite State Machines (FSMs). In FSMs, the behavior
is abstracted by means of states and transitions that define the response of the
agent to a given external output. FSMs lend themselves well for user-defined au-
tonomous behaviors but have also seen successful application with EAs e.g. [9].
Compared to ANNs, they are easier to understand/explain and therefore support
the analysis of the behavioral spectrum of an evolved controller. Despite their
usefulness in simple action sequences, FSMs quickly become illegible for complex
tasks, as the amount of states grows exponentially, a phenomenon termed state
explosion [10]. Behavior Trees (BTs) represent a promising alternative to FSMs
as a mathematical model of plan execution. Based on a hierarchical network of
actions and conditions, BTs are capable of describing complex behaviors readily
intelligible for users, and allow for easy decomposition and reuse of encapsulated
sub-behaviors [11]. Furthermore, there have been attempts of adopting EAs to
automatically generate BTs for a given task [12]. Though the general feasibility
of the procedure has been shown, several parts of the design process were done
manually. As BTs allow for flexible design of actions and conditions specifically
tailored to the platform they are deployed on, they do not necessarily require
hardware with extensive computational resources. Therefore, they are suited to
be used with resource-constrained miniaturized robots.

Configuration
 Layer

Layout
 Layer

Perception
Layer

1

2

Action → a
1

Action → a
2

Action → a
3

Action → a
4

Action → a
5

Conditions Pool

Condition → p
1

Condition → p
2

Condition → p
3

3

5

Leaf
Action

Condition

Actions Pool

Nodes Pool
Composites

Selector
Sequence

Parallel

Decorator
Inverter

Repeater

4

Grammar
Genotype → BT

Generate
Population

Evaluate Select

Grammar
BT→ Genotype

Reproduce

Stop
Criterion

Evolved
Behaviour

Tree

Instruction
Set

6 Evolution BT

O
b j

e c
tiv

e
1

Objective 2

L
1

L
2

C
1

C
2

C
3

p
1

p
2

p
3

O
b j

e c
tiv

e
1

Objective 2

*
*

* *

*
*

**

Pareto optimal
front for L

1

Pareto optimal
front for L

2

Agent
Abstraction

Action
Generation

Fig. 1: Instinct Evolution Scheme as proposed by [7]

4 Hallawa et al.

Instinct Evolution Scheme: The Instinct Evolution Scheme (IES), introduced
in [7], attempts to mimic the instinctive behaviour found in nature, where biolog-
ical entities react to environment stimuli in a fast-reflexive way, with no complex
processing. This is adequate for resource constrained robots or sensory agents.
The main idea is to use extrinsic evolution, but after minimizing the solution
space using ”lower-level” objectives. The reduced solution space is then set as
the new solution space for the evolution of the behaviour using GE on BTs.
In other words, the scheme provides a methodology to limit the solution space
for evolving an optimum instinctive behaviour represented by a BT via identi-
fying a set of ”interesting” actions and conditions to be used for evolving the
behaviour. The scheme consists of six steps as shown in Fig. 1: Firstly, an agent
is abstracted as a layout layer, then each element in the layout layer (L1, L2 . . .)
includes a set of possible tunable configurations in the configuration layer (C1,
C2 . . .) and finally, there is a perception layer, which is the set of all perception
interfaces with the environment, e.g. sensors. In other words, the layout layer
consists of configurable modules that are provided by the hardware architecture
of the robot, e.g. a communication module, a compression module . . . etc. For
each of these modules, a set of configurations are possible, which can be found in
the configuration layer, e.g. the Variable Gain Amplifier (VGA) voltage. In step
2, the solution space is minimized, i.e. a multi-objective optimization algorithm
is used to identify the Pareto front of the variables in the configuration layer
relative to ”local” objectives. For example, in case of communication module,
the local objectives might be the Signal-to-Noise Ratio (SNR) vs. power con-
sumption. This is done for each element in the layout layer (L1, L2 . . .) using,
for example, R2-indicator based Evolutionary Multi-objective Optimization Al-
gorithm (EMOA). This optimization process will lead to a set of Pareto fronts
for each module in the layout layer, relative to its local objectives. In addition,
each solution in these Pareto fronts is a configuration, which is ”interesting” as it
is already dominating other solutions that are not on this Pareto front. In other
words, the solution space has shrunk to only solutions that would offer a gain
relative to the local objectives for each of the modules in the layout layer. In
the next step (step 3), these solutions in the generated Pareto fronts are used to
produce a pool dubbed as an action pool. This is now the new solution space of
possible reactions from the robot to the environment, and it will be used in step
6 to evolve a BT, i.e. all actions in the evolved BT in step 6 are from this action
pool. On the other hand, in step 4, a set of possible types of nodes are defined in
the nodes pool. This basically sets the hardware allowable types of nodes in the
BT, e.g. if the hardware allow parallel nodes, which can check multiple condi-
tions or actions at the same time, then it is added to the nodes pool. This is done
for all types of possible nodes, e.g. invert nodes, repeaters nodes . . . etc. In step
5, the perception pool is generated. This is done via defining all possible sensors
(or any points of interaction between the robot and the environment). Then,
possible conditions to be checked for each of these sensors are set. Obviously, in
an unknown environment, defining exactly what are the conditions to be checked
is not possible, however, if the robot swarm conduct one real experiment in the

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 5

environment before the evolution of BT, the data extracted can be statistically
studied and a set of ”interesting” conditions for each sensor in the perception
layer can be defined.This paper is based on IES, hence, in our work the objective
is to evolve a BT given an action, condition and nodes pools.

3 Methodology

Implementation of Behavior Trees: The literature offers multiple imple-
mentations of BT, such as in [13, 14]. The main differences are mainly in the
execution logic and the possible node types. These two factors play an impor-
tant role in the performance of any BT. As mentioned in Section 2, the BTs’
main strengths are their modularity and re-usability. These are possible because
all node types used in a BT return one of the three possible states: Success,
Failure and Running. Furthermore, a tick function is used as an intermediate
layer that selects the appropriate routine based on the node type which has
been called. In our work, four possible nodes were implemented: selector node,
sequence node, action node and condition node. These nodes are sufficient to
achieve a wide range of behaviors. Furthermore, a parsing function was imple-
mented to produce an instruction set using if-else conditions only, which is more
hardware-friendly. And as stated earlier, this work is based on the IES described
in Section 2. Accordingly, the actions pool is considered as an input to the GE
process presented in this work. Furthermore, it is assumed that the number of
available sensors is also given (the perception layer). For the conditions pool,
each given sensor is fed a set of environment data during the initialization of
the virtual environment used in the evolution process of the BT, then thresholds
are defined by threshold = Mi ± n · σi, based on the statistical analysis of the
sensed data by the virtual environment. A condition node in the evolved BT then
checks whether the current sensor readings are located within the range defined
by two neighboring thresholds. The resulting condition pool for the ith sensor
can be seen in Table 1. Finally, to facilitate the BT evaluation, each executed
BT has an action log and condition log, where all actions and conditions that
were triggered at all time steps are recorded and later used for its evaluation.

Condition 1 x < Mi − σi

Condition 2 Mi − σi ≤ x < Mi

Condition 3 Mi ≤ x < Mi + σi

Condition 4 Mi + σi ≤ x

Table 1: Condition pool for the ith sensor

Representation in a Context-Free Grammar: A central task of incor-
porating BTs into the framework of GE is to find a grammatical representation
that can be used in the genotype-to-phenotype mapping. Therefore, a formal lan-
guage needs to be abstracted from the syntax and semantics of BTs transform-
ing the two-dimensional hierarchical structure of a BT into a one-dimensional

6 Hallawa et al.

string representation. The final language LBT was derived based on the alphabet
ΣBT = {a, c, s, q, 〈, 〉, ◦, 0, 1, ..., 9} (See Table 2).

Notation Meaning

s Selector node
q Sequence node
ai Action node with the identifier i
ck Condition node with the identifier k
〈 〉 Encapsulation of a subtree
◦ Separation of two nodes/subtrees with the same parent

Table 2: Symbols of the language LBT designed for BTs description

In the next step, we develop a context-free grammar GBT = (V,ΣBT , P, S)
capable of describing the language LBT . Given the variables V = {A,C,N, T}
and the start symbol S = {< N > 〈< T > ◦ < T >〉} the following production
rules P were created:

< T > ::= a < A > | < T > ◦ < T > | (1)

c < C > | < N > 〈< T > ◦ < T >〉
< N > ::= s | q (2)

< A > ::= 1 | 2 | ... | NA (3)

< C > ::= 1 | 2 | ... | NC (4)

The variable < T > represents a subtree, while the variable < N > is a place-
holder for a composite node that controls the flow of its respective subtree.
Composite nodes are required to have at least two child nodes. Hereby the use-
less nesting of single composite nodes within each other is prohibited. Hence, the
start symbol already includes two subtrees for the root node and further com-
posite nodes can only be inserted with two respective subtrees. Furthermore,
the variables < A > and < C > can be replaced by a number representing their
unique identifier, where NA is the number of possible actions and NC is the
number of possible conditions to choose from.

Selection: Early tests showed that roulette selection method suffered from
premature convergence, thus rank-based selection and tournament selections
were implemented instead. Rank-based offered a better solution than the roulette,
however, while the tournament selection did not add any further benefits de-
spite its relative higher computational costs. Therefore, rank-based selection was
adopted in the implementation. Furthermore, elitism was also implemented.

Crossover: After two parents have been chosen by rank-based selection,
they are subject to crossover with the probability pcrossover, where pcrossover de-
notes the crossover rate. The well established one-point crossover is implemented
as it represents the de facto standard for GE and has proven to provide good
performance in different applications [15]. For each parent, a random crossover
point is drawn from the discrete uniform distribution U{2, kend,i − 1}, where
kend,i denotes the end of the coding region of the genotype of parent i. If the

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 7

length of the resulting genotype exceeds lgenotype, the excess codons are dis-
carded and the last codon is replaced by the escape character ’0’ to properly
define the end of the coding region. If, on the other hand, the length of the re-
sulting genotype underruns lgenotype, the missing codons are generated from the
discrete uniform distribution U{1, cmax}, similarly to the initialization process.
As the one-point crossover is applied to the genotype without access to pheno-
typic information, it does not respect the tree structure of the phenotype. As
a result, changes on the genotype with one-point crossover can lead to drastic
differences in the phenotypic appearance. As an alternative, a more sophisti-
cated crossover operation has been implemented that allows for the protection
of the integrity of the BT by exchanging arbitrary subtrees between the parents.
Moreover, to realize a more general procedure that can be applied to arbitrary
grammars, the extension to GE proposed by [16] can be used. In this regard,
two new variables < X > and < Y > are introduced to the grammar marking
the beginning and ending of a subtree. Consequently, the extended grammar
GBT+ = (Ṽ , ΣBT , P̃ , S̃) with the variables Ṽ = {A,C,N, T,X, Y } and the start
symbol S̃ = {< N > 〈< X >< T >< Y > ◦ < X >< T >< Y >〉} is cre-
ated. The production rules P̃ were extended to denote possible crossover points
encapsulating subtrees:

< T > ::= < X >< T >< Y > ◦ < X >< T >< Y > | (5)

< N > 〈< X >< T >< Y > ◦ < X >< T >< Y >〉 |
a < A > | c < C >

< N > ::= s | q (6)

< A > ::= 1 | 2 | ... | NA (7)

< C > ::= 1 | 2 | ... | NC (8)

The crossover points for each individual can then be generated during the parsing
process. When the parser encounters < X > during execution it will not use
the currently active codon. Instead, it creates a new row in the N × 2 matrix
XOSites that is kept for each individual. It stores the current position within
the genotype in the first column and adds a placeholder value in the second
column. Afterwards the variable < X > is removed from the phenotype and
the parsing process continues as usual. When < Y > is encountered the last
row of XOSites which contains a placeholder value in the second column is
searched. The placeholder value is then replaced by the index one before the
current position within the genotype and the variable < Y > is removed from
the phenotype. For a valid BT, each row of XOSites denotes a section of the
genotype that can be exchanged without disrupting the integrity of the BT. The
crossover operation can then randomly pick a pair of crossover points from the
XOSites matrix of each parent and exchange the respective sections of the gene
to create the genotypes for the two children.

Mutation: Mutation is realized by iterating through the genotype of an indi-
vidual until the escape character ’0’ is reached. With the predefined probability
pmutation, commonly referred to as the mutation rate, a single codon is replaced

8 Hallawa et al.

by a new codon drawn from the discrete uniform distribution U{1, cmax}. Thus,
only the non-coding region of the genotype is subject to mutation.

Fitness Function: The fitness function can be split into two components:
the first component includes the primary objective that should be solved by
the BT. Naturally, it is dependent on the problem domain and varies in its
concrete implementation. This part can get computationally expensive, as each
BT in the population needs to be executed for a certain amount of time within
the simulated environment in order to evaluate the embodied behavior. The
second component of the fitness function deals with the complexity of the BT.
As seen in [12] evolving BTs often results in cluttered trees with a high amount
of redundancy. In this regard, the number of certain node types in the BT are
calculated. This can be done by counting the number of occurrences of the
corresponding symbol in the phenotype. Thus, the complexity measurement is
set as follows:

Ci =
ni

Nmax,i
∀ i ∈ {1, 2, 3} (9)

where Ci is the complexity with regard to node type i, ni is the number of nodes
of type i present in the BT and Nmax,i is the maximum amount of nodes of type
i that can be encoded within a single genotype of size lgenotype. The subindeces
denote the node types considered in this work: 1 stands for action node, 2 for
condition node and 3 for composite nodes. Consequently, it holds Ci ∈ [0, 1). The
maximum amount of nodes of a certain type strongly depends on the structure
of the production rules of the grammar. For a given genotype length, it can be
approximated by determining the number of codons that are typically needed
to create a certain node type:

Nmax,1 = Nmax,2 =
lgenotype

4
(10) Nmax,3 =

lgenotype
2

(11)

For Nmax,1 and Nmax,2 it is assumed that one codon is needed in order to
create a new subtree < T > by applying the rule < T > ::= < T > ◦ < T >.
Additionally, three codons are necessary to generate an action or condition node
and its respective node identifier. Furthermore, for Nmax,3, typically only two
codons are needed. First a general composite node with two child subtrees is
created with one codon by applying the rule < T > ::= < N > 〈< T > ◦ <
T >〉. Subsequently, another codon is used to replace < N > and decide on the
type of the composite node. As this sequence cannot generate leaf nodes, Nmax,3

represents an upper bound.

4 Case Study

To be able to test the proposed GE framework, a virtual environment inspired
by a real-world problem is set such as in Figure 2 . Typically, in a real-world case
of exploring a GPS-denied, hardly accessible unknown environment, a swarm of

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 9

Fig. 2: GPS-denied, hardly accessible environment scenario

robots or sensory agents are injected from one point to be later extracted from
another point. Due to their limited resources, the agents need to minimize their
power consumption while simultaneously guaranteeing that the collected data
obtained from the environment are sufficient to identify the environmental prop-
erties of interest. The robot will under go all five steps in IES, thus we assume
that all pools of IES are already generated, because the focus of this work is the
evolution of the behaviour tree given these pools (Step 6 in IES). The objective
here is to evolve a BT given a virtual environment. To achieve this, the environ-
mental properties which the agents are exposed to are created artificially, this
will help us to define deterministically identifiable zones, and thus test the abil-
ity of the evolved behaviour to correctly identify a zone. Furthermore, in order
to assess how good an evolved BT is, each environment zone introduced artifi-
cially has a score for each of the n possible actions available in the action pool.
In addition, to make the test more challenging, the environment zones where
designed such that it is not possible to identify a zone using only a single sensor,
or using all sensors (i.e. some sensor readings are redundant). And since running
the controller itself involves computational costs, we set a special emphasis on
decreasing the complexity of the behaviour tree representation on the robot.

Therefore, to evaluate an evolved BT, firstly the BT is executed within the
simulation of a virtual environment, and an action log is created, which contains
the identifiers of the invoked actions for each time step. Afterwards, the action
log is analyzed in order to rate the quality of the embodied behavior of an agent
by comparing it to the predefined optimum solution, and the distance to that
optimal solution. The latter is realized by calculating the Hamming distances
di for each zone i between the identifier of the action invoked by an agent and
the corresponding optimum action identifier defined by the virtual environment.
i.e. each possible action from the action pool has a fitness distance from the
optimal action for each zone. Furthermore, as mentioned earlier the complexity
of the BT is important to consider, BTs with more nodes are penalized. This is
achieved by incorporating the weighted complexity with regard to different node

10 Hallawa et al.

types into the fitness function as follows:

F = D −Θ ·
3∑

i=1

φi · Ci︸ ︷︷ ︸
C

(12)

where F is the fitness, D can be interpreted as the relative quality of the em-
bodied behavior of an agent and D ∈ [0, 1] holds. Finally, Θ,φi ∈ [0, 1] are
weighting coefficients: Θ specifies the extent of the penalty on complex individ-
uals. φi ∈ [0, 1] are weighting coefficients determining the portion of the indi-
vidual complexity measurements on the combined complexity measurement C.
Therefore, it must hold

∑3
i=1 φi = 1. The values for φ1, φ2, φ3 should reflect the

costs of the node types, e.g. action or condition or composite. In this work action
nodes are regarded as the most resource demanding, followed by condition nodes,
while composite nodes have the smallest impact on performance. Accordingly,
the weighting coefficients were set to φ1 = 0.5, φ2 = 0.3 and φ3 = 0.2.

5 Results

Scenario A: 4 Zones: The first tests investigating the ability of the GE to
create adaptive BTs in a zone identification task were conducted with 4 zones
and 6 sensors. For each zone two properties have been defined that can be de-
tected with two separate sensors. As a property is always shared by two zones,
two condition nodes need to be checked in order to unambiguously identify an
individual zone.

Parameter Value

Population Size (Npopulation) 100
Mutation Rate (pmutation) 0.1
Crossover Rate (pcrossover) 0.1
Complexity Penalty (Θ) 0.5
Genotype Size (lgenotype) 300
Number of Zones (n) 4

(a) Parameters

Zone 1 Zone 2 Zone 3 Zone 4

Sensor 1 1 1 -1 -1
Sensor 2 -1 -1 1 1
Sensor 3 1 -1 1 -1
Sensor 4 -1 1 -1 1
Sensor 5 0 0 0 0
Sensor 6 0 0 0 0

(b) Distribution of sensor properties

Table 3: Settings for the GE with 4 zones and 6 sensors.
Scenario B: 8 Zones: To investigate the ability of the proposed scheme

to evolve adaptive BTs, a zone identification task were conducted on an envi-
ronment with 8 zones and with 8 available sensors on the robot. As shown in
Table 4b, for each zone, four properties have been defined that can be detected
with four separate sensors out of the eight available ones. Since two environment
properties are always shared by two zones, at least two conditions are needed to
unambiguously identify an individual zone, which is challenging for the gram-
matical evolution scheme. Furthermore, four sensors are redundant in the zone
identification, requires the GE to check only the relevant ones and discard the
rest. The used settings are summed up in Table 4a. Fig. 3a presents the average
identification performance over 25 runs. Moreover, the average complexity of the

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 11

Parameter Value

Population Size 200
Mutation Rate 0.1
Crossover Rate 0.9
Complexity Penalty 0.5
Genotype Size 300
Number of Zones 8

(a) GE tuning parameters

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Sensor 1 1 1 -1 -1 0 0 0 0
Sensor 2 -1 -1 1 1 0 0 0 0
Sensor 3 1 -1 1 -1 0 0 0 0
Sensor 4 -1 1 -1 1 0 0 0 0
Sensor 5 0 0 0 0 1 1 -1 -1
Sensor 6 0 0 0 0 -1 -1 1 1
Sensor 7 0 0 0 0 1 -1 1 -1
Sensor 8 0 0 0 0 -1 1 -1 1

(b) Virtual environment zone proper-
ties

Table 4: Settings for the GE with 8 zones and 8 sensors.

0 20 40 60 80 100

60

70

80

90

Iteration

F
it

n
es

s
[%

]

Θ = 0.5

Θ = 0

(a) Zone Identification

0 20 40 60 80 100

5

10

Iteration

C
o
m

p
le

x
it

y
[%

]

Θ = 0.5

Θ = 0

(b) Complexity

Fig. 3: Fitness convergence over 25 runs for 8 zones and 8 sensors.

0 20 40 60 80 100
40

60

80

100

Iteration

F
it

n
es

s
[%

]

Best Individual

Worst Individual

Mean Fitness

(a) Zone Identification

0 20 40 60 80 100
0

10

20

30

40

Iteration

C
o
m

p
le

x
it

y
[%

]

(b) Complexity

Fig. 4: Fitness convergence over a single run for 8 zones and 8 sensors.

BTs shown in 3b, as shown, it increases considerably when compared with the
one influenced with complexity penalty. Moreover, looking at a single run of the
GE for the 8 zones scenario as shown in Fig. 4, the zone identification task per-
formance shows a consistent convergence throughout the whole run, while the
complexity of the underlying BTs is subject to substantial changes indicating
a proper exploration of more complex trees regardless of the involved penalty.
Moreover, the corresponding BT is shown in Fig. 6a, in total 4 composite nodes,
4 condition nodes and 4 action nodes are used by the tree. Note that it would

12 Hallawa et al.

require 8 actions to perfectly identify each zone. Finally, Fig. 6b shows the gen-
erated if-else control flow.

(a) Behavior Tree

1 state = action(201);
2 if state ! = FAILURE

then
3 state = condition(104);
4 if state == FAILURE

then
5 state =

action(301);

6 end

7 end
8 if state ! = FAILURE

then
9 state = condition(103);

10 end
11 if state ! = FAILURE

then
12 state = action(501);
13 end
14 if state ! = FAILURE

then
15 state = condition(604);
16 end
17 if state ! = FAILURE

then
18 state = condition(501);
19 end
20 if state ! = FAILURE

then
21 state = action(701);
22 end

(b) Control Flow

Zone 1 2 3 4 5 6 7 8

Actual Solution 201 201 301 301 501 501 701 701

Optimum Solution 101 201 301 401 501 601 701 801

(c) Action Log

Fig. 5: Best BT solution for 8 zones environment and 8 sensors.

Evolving Instincts in Autonomous Agents Using Grammatical Evolution 13

(a) Best Evolved BT for Scenario 8 Zones

1 state = action(201);
2 if state ! = FAILURE then
3 state = condition(104);
4 if state == FAILURE

then
5 state = action(301);
6 end

7 end
8 if state ! = FAILURE then
9 state = condition(103);

10 end
11 if state ! = FAILURE then
12 state = action(501);
13 end
14 if state ! = FAILURE then
15 state = condition(604);
16 end
17 if state ! = FAILURE then
18 state = condition(501);
19 end
20 if state ! = FAILURE then
21 state = action(701);
22 end

(b) Control Flow of 6a

Fig. 6: Best Evolved BTs and Corresponding Control Flow

6 Conclusion

In this work, a Grammatical Evolution (GE) learning model for Behavior Trees
(BTs) was successfully integrated into the Instinct Evolution Scheme (IES),
thereby providing an offline framework for evolving an online behavior to resource-
constrained autonomous robots. A special emphasis was put on minimizing the
complexity of the evolved BTs. Furthermore, tests on virtually developed envi-
ronments showed the effectiveness of the used fitness function and grammar.

References

1. Stoianov, I., Nachman, L., Madden, S., Tokmouline, T.: PIPENET A wireless
sensor network for pipeline monitoring. Proceedings of the 6th international con-
ference on Information processing in sensor networks - IPSN ’07 (2007) 264

2. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for Minimally Invasive
Medicine. Annual Review of Biomedical Engineering 12(1) (2010) 55–85

14 Hallawa et al.

3. Fister, I., Strnad, D., Yang, X.s., Jr, I.F.: Adaptation and Hybridization in Com-
putational Intelligence. Volume 18. Springer (2015)

4. Higuchi, T., Liu, Y., Yao, X.: Evolvable Hardware. Springer Science & Business
Media (2006)

5. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits
and networks. IEEE Transactions on Evolutionary Computation 11(5) (2007)

6. Glackin, B., Maguire, L.P., McGinnity, T.M.: Intrinsic and extrinsic implementa-
tion of a bio-inspired hardware system. Information Sciences 161(1-2) (2004)

7. Hallawa, A., De Roose, J., Andraud, M., Verhelst, M., Ascheid, G.: Instinct-driven
dynamic hardware reconfiguration: Evolutionary algorithm optimized compression
for autonomous sensory agents. In: Proceedings of the 2017 Annual Conference on
Genetic and Evolutionary Computation, ACM (2017)

8. Pintér-Bartha, Á., Sobe, A., Elmenreich, W.: Towards the Light - Comparing
Evolved Neural Network Controllers and Finite State Machine Controllers. 10th
International Workshop on Intellegent Solutions in Embedded Systems 0 (2012)

9. König, L., Mostaghim, S., Schmeck, H.: Decentralized evolution of robotic behavior
using finite state machines. International Journal of Intelligent Computing and
Cybernetics 2(4) (2009) 695–723

10. Valmari, A.: The state explosion problem. Lectures on Petri Nets I: Basic Models,
Lecture Notes in Computer Science Volume 1491 1491 (1998) 429–528

11. Colledanchise, M., Ogren, P.: How Behavior Trees Modularize Hybrid Control Sys-
tems and Generalize Sequential Behavior Compositions, the Subsumption Archi-
tecture, and Decision Trees. IEEE Transactions on Robotics 33(2) (2017) 372–389

12. Nicolau, M., Perez-Liebana, D., O’Neill, M., Brabazon, A.: Evolutionary Behavior
Tree Approaches for Navigating Platform Games. IEEE Transactions on Compu-
tational Intelligence and AI in Games PP(99) (2016) 1

13. Bagnell, J.A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klin-
gensmith, M., Libby, J., Liu, T.Y., Pollard, N., Pivtoraiko, M., Valois, J.S., Zhu, R.:
An integrated system for autonomous robotics manipulation. IEEE International
Conference on Intelligent Robots and Systems (2012) 2955–2962

14. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behav-
ior trees framework for robot control. In: Robotics and Automation (ICRA), 2014
IEEE International Conference on, IEEE (2014) 5420–5427

15. Keijzer, M., Ryan, C., O’Neill, M., Cattolico, M., Babovic, V.: Ripple Crossover in
Genetic Programming. In: Proceedings of the 4th European Conference on Genetic
Programming, - EuroGP, Lake Como, 18-20, April, 2001. Volume 2038. (2001)

16. Nicolau, M., Dempsey, I.: Introducing Grammar Based Extensions for Grammat-
ical Evolution. Proceedings of the 2006 IEEE Congress on Evolutionary Compu-
tation (April) (2006) 2663–2670

