
A Local Search with a Surrogate Assisted
Option for Instance Reduction

Ferrante Neri[0000−0002−6100−6532] and Isaac Triguero[0000−0002−0150−0651]

Computational Optimisation and Learning (COL) Lab,
School of Computer Science, University of Nottingham, United Kingdom

{ferrante.neri,isaac.triguero}@nottingham.ac.uk

Abstract. In data mining, instance reduction is a key data pre-processing
step that simplifies and cleans raw data, by either selecting or creating
new samples, before applying a learning algorithm. This usually yields to
a complex large scale and computationally expensive optimisation prob-
lem which has been typically tackled by sophisticated population-based
metaheuristics. Unlike the recent literature, in order to accomplish this
target, this article proposes the use of a simple local search algorithm
and its integration with an optional surrogate assisted model. This local
search, in accordance with variable decomposition techniques for large
scale problems, perturbs an n-dimensional vector along the directions
identified by its design variables one by one.

Empirical results in 40 small data sets show that, despite its simplicity,
the proposed baseline local search on its own is competitive with more
complex algorithms representing the state-of-the-art for instance reduc-
tion in classification problems. The use of the proposed local surrogate
model enables a reduction of the computationally expensive objective
function calls with accuracy test results overall comparable with respect
to its baseline counterpart.

Keywords: Instance Reduction · Instance Generation · Computation-
ally Expensive Problems · Surrogate Assisted Algorithms · Local Search
· Pattern Search.

1 Introduction

Data science is a discipline that studies methods to store and manage data with
the aim of extracting knowledge from it [6]. A typical problem in data science
is to have a very large raw data set which requires pre-processing to enable
data mining techniques to learn from a more manageable data set that is free of
noise, redundant or irrelevant samples. In order to overcome this issue, a normal
practice consists of selecting some instances and discarding others, or creating
artificial samples that better represent the original training data.

However, it is fundamental to properly select or generate those instances.
Instance reduction techniques, either selection [7] or generation [28], have to
allow still to extract the required knowledge. In other words, we would like to

2 F. Neri and I. Triguero

simplify the original data set and keep it as informative as it is when it contains
all the data, or even better if noisy data is removed appropriately [14].

Instance reduction can be formulated as an optimisation problem and be
addressed by search algorithms. The pure selection of instances can be seen
as a binary space search problem [1]. The generation of new representative in-
stances, however, can be expressed as a continuous space search problem. The
latter approach turned out to be more flexible, but also more complex [30]. In
both cases, Evolutionary Algorithms (EAs) have excelled in comparison with
other approaches [7, 28]. EAs for instance generation are based on optimising
the location of a subset of instances [18, 30].

Note that most instance reduction algorithm were originally designed to en-
hance the performance of the Nearest Neighbour classifier (NN) [5], but the
resulting pre-processed data set could be used, in principle, by any classifier [1].
In this work, we are focused on instance generation for NN classification, also
known as prototype generation.

Two major challenges are associated to the instance reduction problem: the
high dimensionality of the problem and the high cost of each objective function
evaluation, which typically consists of classifying the training data. The first
challenge is addressed by using an exploitative operator which can be embed-
ded within heuristic frameworks. Some examples under the umbrella name of
Memetic Algorithms are proposed in [8, 9]. A comparison reporting the advan-
tages of the extra local search is reported in [20]. In the recent literature, these
problems are currently being addressed by using distributed approaches in big
data platforms [33], but population-based approaches keep taking a long time to
pre-process the data. Thus, there is a need for simpler and faster, yet powerful,
search algorithms.

This article also explicitly addresses the second challenge by proposing a
technique to limit the cost of instance reduction within the optimisation process.
More specifically, this article proposes the use of a local search algorithm for
large scale problems and a surrogate (approximated) local model to reduce the
number of objective function calls. To the best of our knowledge, this is the first
local search proposed for instance generation, and the use of surrogate models
has been often neglected. The proposed local search samples the points in its
neighbourhood and makes use of them to build a multi-variable (local) linear
model. The resulting surrogate assisted local search [11, 26, 25, 22] alternates the
use of the true objective function with the approximation given by the surrogate
model. A mechanism to ensure that wrong search directions are suggested by
the surrogate model has been implemented: the algorithm checks the promising
points provided by the surrogate model before accepting a new base point.

The remainder of this article is organised in the following way. Section 2
describes the instance reduction as an optimisation problem and provides an ex-
planation why the problem is unavoidably large scale and why calculation of the
objective function is computationally expensive. Section 3 describes and justifies
the proposed method. Details about the implementation and linear regression

A Local Search with a Surrogate Assisted Option for Instance Reduction 3

model are also included. Section 4 displays the algorithmic results. Finally, Sec-
tion 5 provides the conclusion of this study.

2 Problem Formulation

Let TR be a training data set and TS a test set for a supervised classification
problem. Both data sets can be viewed as a matrix whose rows are the instances
and columns are the features:

TR =


F1 F2 . . . Fm

I1 a11 a12 . . . a1m
I2 a21 a22 . . . a2m
.
Il al1 al2 . . . alm


Each instance belongs to a class ω. For the TR set the class ω is known,

while it is unknown for TS. The objective of an instance reduction algorithm is
to provide a reduced set RS of instances, which are either selected or generated
from the examples of TR,

RS =


F1 F2 . . . Fm

I1 b11 b12 . . . b1m
I2 b21 b22 . . . b2m
.
Ii bi1 bi2 . . . bim


with i� l that still allows the data representation of TR. RS should be created
to efficiently represent the distributions of the classes. The size of RS should
be significantly reduced to minimise the information that requires storing, and
speed up the posterior classification phase.

We may, equivalently, represent the matrix RS as a vector x of length n =
i×m whose elements are the rows of TR arranged sequentially

x = (b11, b12, . . . , b1m, b21, b22, . . . , b2m, . . . , bi1, bi2, . . . , bim) = (x1, x2, . . . , xn)

The objective function f (x) will measure how well the resulting RS exem-
plifies the original training data TR. To do so, in the literature, RS is inferred
using the TR matrix as representative information of the problem, assuming
that this will allow us to classify the elements of TS. In particular, this objec-
tive function simply calculates the classification accuracy (i.e. number of correct
classifications regarding the total number of instances classified) using RS as
training data, and TR as test data.

2.1 Computational Cost of the Objective Function

The exact computational cost of the objective function depends on the particular
classifier that is being used. Most of the instance reduction literature focused

4 F. Neri and I. Triguero

their efforts on improving the well-known NN classifier, because it is one of the
most affected classifiers by the size of the training data.

Focusing on the NN rule as base classifier, calculating the accuracy of RS
consists of computing the Euclidean distance between all elements of TR against
all elements of RS and determine which is the closest instance in RS for each
element of TR. The class label of the closest instance is used as prediction.

This intuitively shows that the cost of the objective function will be very high
when the size of TR is very big. The complexity of instance reduction models is
O((i ·m)2) or higher, and best performing methods are based on EAs [30].

Current research is typically focused on the use of divide-and-conquer ap-
proaches, implemented with big data technologies, to parallelise the execution
of instance reduction approaches. We can also find an approximation strategy,
called windowing [31], which estimates the fitness value of RS using a random
subset of TR at every iteration of the search (this reduces significantly the cost,
but could mislead the search). However, the use of more sophisticated surrogate
models to reduce the number of evaluations for instance reduction algorithms
has been neglected.

3 A Local Search for Instance Reduction

This section presents the proposed method, outlines its theoretical and imple-
mentation aspects and justifies the choices made. More specifically, Subsection
3.1 presents the structure of the baseline Local Search, Subsection 3.2 describes
the multivariable linear model used in this study, Subsection 3.3 outlines the
surrogate assisted technique to build and use the surrogate model with the orig-
inal objective function, and finally, Subsection 3.4 provides a justification of the
algorithmic choices made.

3.1 Baseline Local Search

The proposed algorithm is based on a greedy local search [13, 21] of the family
of Pattern Search algorithms [27]. The algorithm perturbs each variable (of x)
at the time and replaces the current best point with a better one as soon as an
improved solution is found. Along the directions identified by each variable, the
algorithm attempts to move one step in one oriented direction and then half step
in the opposite oriented direction if the first attempt fails. More specifically, the
algorithm explores at first

xt = x− ρ · ei

where the scalar ρ is the step-size (exploratory radius) defined by the user and
ei is the ith versor, i.e. a vector composed of zeros and only a one in the ith

position. Then if this exploration fails, the algorithm attempts to explore

xt = x +
ρ

2
· ei.

A Local Search with a Surrogate Assisted Option for Instance Reduction 5

Algorithm 1 Baseline Local Search used for Instance Reduction (LSIR)

1: INPUT x
2: while local budget condition do
3: xt = x

{**Exploration**}
4: for i = 1 : n do
5: xt = x− ρ · ei

6: if f
(
xt
)
≤ f (x) then

7: x = xt

8: else
9: xt = x + ρ

2 · e
i

10: if f
(
xt
)
≤ f (x) then

11: x = xt

12: end if
13: end if
14: end for

15: if x has not been updated then
16: ρ = ρ

2

17: end if
18: end while
19: RETURN x

Algorithm 1 shows the pseudocode of the baseline Local Search for Instance
Reduction (LSIR) used in this study.

For the experiments carried out in this paper, on the basis of preliminary
tests we employed a toroidal handling of the bounds, i.e. for xi ∈ [xlow, xhigh],
if xi > xhigh it is reinserted by reassignment

xi = xlow + (xi − xhigh)− b (xi − xhigh)

(xhigh − xlow)
c (xhigh − xlow)

while if xi < xlow it is reinserted by reassignment

xi = xhigh −
(

(xlow − xi)− b
(xlow − xi)

(xhigh − xlow)
c (xhigh − xlow)

)
∀i. The parentheses bc indicate the truncation to the lower integer.

3.2 Linear Multivariable Surrogate Model

In order to approximate the objective function f and generate a surrogate func-
tion f̃ , a multivariable linear regression with least square method is implemented,
see [10, 12]. For the sake of clarity, we built a local surrogate linear model

f̃ (x) = c0 + c1x1 + c2x2 + cnxn =

n∑
j=1

cjxj + c0.

In order to identify the n + 1 parameters c0, c1, c2, . . . cn the least square
method has been applied.

The method processes a sample of n+ 1 observation vectors

x1,x2, . . .xn+1

6 F. Neri and I. Triguero

where

xj = (xj1, xj1, . . . , xjn)

and the corresponding function values

y1 = f
(
x1
)

y2 = f
(
x2
)

. . .
yj = f

(
xj
)

. . .

In order to find the parameters c0, c1, c2, . . . cn we have to minimise the fol-
lowing function ∆

∆ =

n+1∑
j=1

(
yj −

(
c0 +

n∑
i=1

cixji

))2

.

Thus, we have to calculate the partial derivatives of ∆ with respect to
c0, c1, . . . cn. The derivative with respect to c0 and c1 are, respectively

∂∆

∂c0
= −2

n+1∑
j=1

yj −

c0 (n+ 1) + c1

n+1∑
j=1

xj1 + . . .+ cn

n+1∑
j=1

xjn


∂∆

∂c1
= −2

n+1∑
j=1

xj1yj −

c0
n+1∑
j=1

xj1

+ . . .+ c1

n+1∑
j=1

x2j1

+ . . .+ cn

n+1∑
j=1

xj1xjn


The derivative with respect to the generic coefficient ci is

∂∆

∂ci
= −2

n+1∑
j=1

xjiyj −

c0
n+1∑
j=1

xji

+ . . .+ ci

n+1∑
j=1

x2ji

+ . . .+ ck

n+1∑
j=1

xjixjk

+ . . .

 .

By simultaneously equating the derivatives to 0, we obtain the system of
linear equations Lc = ŷ, that is

(n+ 1)
∑n+1
j=1 xj1

∑n+1
j=1 xj2 . . .

∑n+1
j=1 xjn∑n+1

j=1 xj1
∑n+1
j=1 x

2
j1

∑n+1
j=1 xj1xj2 . . .

∑n+1
j=1 xj1xjn∑n+1

j=1 xj2
∑n+1
j=1 xj2xj1

∑n+1
j=1 x

2
j2 . . .

∑n+1
j=1 xj2xjn

.∑n+1
j=1 xjn

∑n+1
j=1 xjnxj1

∑n+1
j=1 xjnxj2 . . .

∑n+1
j=1 x

2
jn



c0
c1
c2
. . .
cn

 =



∑n+1
j=1 yj∑n+1

j=1 xj1yj∑n+1
j=1 xj2yj
. . .∑n+1

j=1 xjnyj

 .

The solution of this system of linear equation is the set of parameters c which
allow the construction of the surrogate model f̃ (x).

A Local Search with a Surrogate Assisted Option for Instance Reduction 7

3.3 The Proposed Surrogate Local Search for Instance Reduction

With reference to Algorithm 1, each exploration in the for loop samples at least
n and at most 2n trial points xt in the neighbourhood of the current best point x.
The proposed Surrogate Assisted Local Search for Instance Reduction (SALSIR)
exploits this logic by storing the visited points in a data structure Surr, that is
a list where each entry is a point x and the corresponding f (x):

Surr (k) = (x, f (x)) .

The data structure Surr is filled until it contains n entries. Since the starting
point is also inserted in Surr, (n+ 1) points are available. These points are used
to build a surrogate model f̃ (x).

For the remaining function calls, the LS uses the surrogate model f̃ (x) in-
stead of the computationally expensive objective function f (x). However, to en-
sure that wrongly estimated search directions do not jeopardise the functioning
of the algorithm, when a solution estimated by the surrogate model outperforms
the current best solution, its actual objective function value is checked. This in-
creases the cost of the algorithm (reduces the advantages of the surrogate model
[19]) . On the other hand, this strategy enhances the reliability of the search.

If the moves failed in all directions, the exploratory radius is halved and the
search repeated in a closer neighbourhood of x. The pseudocode of this algorithm
is shown Algorithm 2. We highlighted that the main loop of the algorithm is
divided into parts: in the first the surrogate model is built while in the second
the surrogate model is used as an alternative to the objective function.

3.4 Motivation of the Proposed Design

This section justifies the algorithmic choices and in particular answers to the
following two questions.

1. Why did we choose this algorithmic structure for this problem?
2. Why did we choose a multivariable linear model as a surrogate?

To address the first question, we have to consider that the optimisation prob-
lem under examination besides being computationally expensive is large scale.
In data science, it is very likely to have a large volume of data and matrix RS
above can easily have still hundreds if not thousands of rows.

For this reason, we selected a LS component that is especially suited for large
problems as it is the main element of the algorithm proposed in [34] and then
used as a LS in [36] and modified as a stand-alone LS within other frameworks,
see e.g. [3, 4].

Techniques that perturb the variables separately, just like that used in this
article, are known to be effective for large scale problems, see [24, 17, 15]. This
observation was reported in the experimental study in [2]. Large scale prob-
lems are by no means easier than low-dimensional problems. However, since in
practice the computational budget cannot grow exponentially with the prob-
lem dimensionality only a very limited portion of the decision space is explored.

8 F. Neri and I. Triguero

Under these experimental conditions, the algorithm “sees” the problem as sepa-
rable: average Pearson and Spearman coefficients of the variables approach zero
independently on the problem when the dimensionality grows, see [2].

This study is one of the reasons behind the decision of using a linear surrogate
model (second question above).

Algorithm 2 The Proposed Surrogate Assisted Local Search for Instance Re-
duction (SALSIR) Algorithm

1: INPUT x
2: while local budget condition do
3: k = 1; i = 1
4: Surr = [] {**Initialise the surrogate list**}
5: xt = x

{**Build the surrogate**}
6: while k ≤ (n+ 1) do

7: xt = x− ρ · ei

8: Surr (k) =
(
xt, f

(
xt
))

9: k = k + 1
10: if f

(
xt
)
≤ f (x) then

11: x = xt

12: else
13: xt = x + ρ

2 · e
i

14: Surr (k) =
(
xt, f

(
xt
))

15: k = k + 1
16: if f

(
xt
)
≤ f (x) then

17: x = xt

18: end if
19: end if
20: i = i+ 1
21: end while
22: Use Surr to build the multivariable linear model f̃ (x) =

∑n
j=1 cjxj + c0

{**Use the surrogate model to reduce the function calls**}
23: for i=i:n do
24: xt = x− ρ · ei

25: if f̃
(
xt
)
≤ f (x) then

26: Calculate f
(
xt
)

{**Ensure that the surrogate does not mislead the search**}
27: if f

(
xt
)
≤ f (x) then

28: x = xt

29: end if
30: else
31: xt = x + ρ

2 · e
i

32: if f̃
(
xt
)
≤ f (x) then

33: Calculate f
(
xt
)

{**Ensure that the surrogate does not mislead the search**}
34: if f

(
xt
)
≤ f (x) then

35: x = xt

36: end if
37: end if
38: end if
39: end for

40: if x has not been updated then
41: ρ = ρ

2

42: end if
43: end while
44: RETURN x

A Local Search with a Surrogate Assisted Option for Instance Reduction 9

From the perspective of the interaction among variables, a complex model is
unnecessary in the highly multivariate domain since both the objective func-
tions and surrogate model (for the limited budget) would appear separable. The
second reason is that, to our knowledge, there are no studies on the fitness land-
scape of the instance reduction problem. Although many studies propose many
algorithms to achieve the reduction of instances, we do not know yet the fea-
tures of the problem, e.g. how multimodal it is, and we do not know how the
landscape depends on the specific data set. Hence, the simplistic approach of
using a local linear model is a natural choice, see [22, 16]. In the present paper,
we propose a local surrogate model that is designed to work in a limited portion
of the decision space by using the neighbour points visited by the local search
algorithm, see [11, 37, 23, 35].

4 Experimental study

This section describes the experimental setup and presents the numerical results
of our study. Subsection 4.1 provides a description of the experimental frame-
work while Subsection 4.2 displays, analyses, and interprets the results achieved
against a number of algorithms for instance reduction previously proposed in
the literature. Finally Subsection 4.3 analyses the benefits and drawbacks of
SALSIR with respect to its baseline counterpart.

4.1 Experimental Framework

For the proposed study, in order to test the viability of the use of a local search
for instance reduction, we have chosen 40 small data sets from the KEEL data set
repository [32] with less than 2,000 instances (based on [7, 28]). Table 1 outlines
the main features of these data sets. For each data set, the total number of ex-
amples (#Ex.), number of attributes (#Atts.), and number of classes (#ω.) are
shown. These data sets are partitioned using a ten fold cross-validation scheme
(10-fcv).For each data set, n can be computed as n = 0.9×#Ex. ×#Atts.

In order to evaluate the proposed methods, the following two measures have
been used:

Classification accuracy:

Acc =
Ncc
NI

where Ncc is the number of correct classifications and NI is the total number of
instances. The classification is performed by the NN classifier using the result-
ing RS. The results in training (TrainAcc) and test (TestAcc) partitions are
reported.

Reduction rate:

Red = 1− size(RS)

size(TR)

where size(RS) and size(TR) are the sizes of reduced and training sets, respec-
tively, that is the number of rows of the two matrices. This index measures the
reduction of storage requirements achieved by an instance reduction algorithm.

10 F. Neri and I. Triguero

Table 1: Brief description of the classification data sets used in this study
Data Set #Ex. #Atts. #ω Data Set #Ex. #Atts. #ω

appendicitis 106 7 2 housevotes 435 16 2

australian 690 14 2 iris 150 4 3

autos 205 25 6 led7digit 500 7 10

balance 625 4 3 lymphography 148 18 4

bands 539 19 2 mammographic 961 5 2

breast 286 9 2 monks 432 6 2

bupa 345 6 2 movement libras 360 90 15

car 1,728 6 4 newthyroid 215 5 3

cleveland 297 13 5 pima 768 8 2

contraceptive 1,473 9 3 saheart 462 9 2

crx 125 15 2 sonar 208 60 2

dermatology 366 33 6 spectheart 267 44 2

ecoli 336 7 8 tae 151 5 3

flare-solar 1,066 9 2 tic-tac-toe 958 9 2

german 1,000 20 2 vehicle 846 18 4

glass 214 9 7 vowel 990 13 11

haberman 306 3 2 wine 178 13 3

hayes-roth 133 4 3 wisconsin 683 9 2

heart 270 13 2 yeast 1484 8 10

hepatitis 155 19 2 zoo 101 17 7

Various instance reduction methods representing the state-of-the-art have
been used for comparison with the proposed LSIR and SALSIR. In this study,
We focused on the family of positioning adjustment methods (see [28]), which
are the best performing instance reduction methods in the literature and follow
a working logic similar to that of the proposed local search algorithms.

In order to compare the methods, we used as a benchmark the NN rule
employing the entire TR set for training. In addition, we compared against the
entire set of the positioning adjustment-based methods reviewed in [28]. We also
included two advanced instance reduction algorithms: an incremental Differential
Evolution (IPADE) [29], and a hybrid instance selection and instance generation
algorithm (SSMA-SFLSDE) which is the current state-of-the-art according to
[30]. Hence, 17 algorithms in total are considered in this study.

For the proposed LSIR method, and its surrogate variant, the search is started
with a random subset of 5% of the rows of TR as suggested in [28]. Both LSIR
and SALSIR are stopped either when ρ < 10−5 or when 100 × n objective
function calls have been performed. Table 2 presents in greater detail the con-
figuration parameters for IPADE, SSMA-SFLSDE and the proposed methods.
Regarding the other comparison methods and related parameters we used the
setup suggested in https://sci2s.ugr.es/pr/pgtax/experimentation.

Table 2: Parameters of the optimisation algorithms used for instance reduction.
Algorithm Parameters

LSIR Evaluations = 100×n, ρ = 0.4 Reduction Rate = 0.95

SALSIR Evaluations = 100×n, ρ = 0.4 Reduction Rate = 0.95

IPADE PopulationSize = 50, iterations of Basic DE = 500

iterSFGSS =8, iterSFHC=20, Fl=0.1, Fu=0.9

SSMA-SFLSDE PopulationSFLSDE= 40, IterationsSFLSDE = 500,

iterSFGSS =8, iterSFHC=20, Fl=0.1, Fu=0.9

NN Number of neighbors = 1, Euclidean distance.

A Local Search with a Surrogate Assisted Option for Instance Reduction 11

4.2 Results

Table 3 provides the average results of reduction rate, training and test accuracy
on the 40 data sets used in this paper. For each type of result, the algorithms
are ranked from the best to the worst. The NN algorithm is highlighted in bold
as the benchmark method.

Table 3: Average Results on 40 small data sets
Red TrainAcc TestAcc

PSCSA 0.9858 LSIR 0.8667 SSMASFLSDE 0.7845

IPADE 0.9798 SSMASFLSDE 0.8651 PSO 0.7501

AVQ 0.9759 SALSIR 0.8410 IPADE 0.7446

LVQTC 0.9551 HYB 0.8309 LSIR 0.7415

SSMASFLSDE 0.9547 ENPC 0.8247 SALSIR 0.7346

MSE 0.9520 PSO 0.8238 NN 0.7326

LVQPRU 0.9503 IPADE 0.7883 MSE 0.7237

DSM 0.9491 MSE 0.7566 ENPC 0.7167

VQ 0.9491 NN 0.7369 HYB 0.7153

PSO 0.9491 LVQTC 0.7327 LVQPRU 0.6997

LSIR 0.9488 LVQPRU 0.7304 LVQTC 0.6981

SALSIR 0.9488 AMPSO 0.7227 AMPSO 0.6903

LVQ3 0.9488 DSM 0.7036 DSM 0.6810

AMPSO 0.9430 LVQ3 0.6931 LVQ3 0.6763

ENPC 0.7220 AVQ 0.6869 PSCSA 0.6682

HYB 0.4278 PSCSA 0.6787 AVQ 0.6672

NN 0.0000 VQ 0.6614 VQ 0.6549

Table 3 shows that the proposed LSIR and SALSIR achieve the best and the
third best training accuracy result, and are ranked forth and fifth in terms of
test accuracy. The reduction rates of LSIR and SALSIR are comparable with
those of the other methods that use a reduction rate parameter of 5%. It must be
remarked that despite the low number of evaluations and a simple local search
strategy, the proposed LSIR algorithm provides the highest train accuracy. This
indicates that LSIR may be incurring in overfitting of the training data sets.
Particularly interesting is the comparison with PSO, which also starts off from
the same random set of instances (5%). PSO does not seem to find an RS that
fits that well the training data. This turns out to be in its favour as it reduces
the overfitting of the training data, providing a higher test result. This may
suggest that an even lower number of evaluations may prevent our algorithm
from overfitting the data.

Table 4 presents the average test classification accuracy results (from the 10-
fcv), for the proposed methods and the NN rule. The best result for each data
set is highlighted in the bold face.

We can observe that for the majority of the datasets (29 out of 40), both
proposed methods outperform the benchmark NN. This means that the methods
are not only able to reduce the size the training data by 95%, but also are also
able to improve the performance of the NN classifier. In the remaining cases the
data reduction process may deteriorate the performance of the NN algorithm
(e.g. on aut data set). This may be due to overfitting of the training data, or

12 F. Neri and I. Triguero

Table 4: Classification accuracy in test of the proposed methods against the NN
benchmark rule

Data Set NN LSIR SALSIR Data Set NN LSIR SALSIR

appendicitis 0.7936 0.8118 0.8018 housevotes 0.9216 0.9149 0.9147

australian 0.8145 0.8261 0.8464 iris 0.9333 0.9467 0.9733

aut 0.7474 0.5434 0.49 led7digit 0.4020 0.704 0.688

bal 0.7904 0.8718 0.8463 lym 0.7387 0.7491 0.755

bands 0.6309 0.6811 0.6848 mammographic 0.7368 0.794 0.8013

bre 0.6535 0.6896 0.6789 monks 0.7791 0.869 0.8505

bupa 0.6108 0.6452 0.6143 movement libras 0.8194 0.5778 0.5639

car 0.8565 0.9143 0.8762 newthyroid 0.9723 0.9632 0.9584

cleveland 0.5314 0.5483 0.5644 pima 0.7033 0.6903 0.6488

contraceptive 0.4277 0.48 0.4657 saheart 0.6449 0.6926 0.6687

crx 0.7957 0.8362 0.8217 sonar 0.8555 0.7776 0.706

dermatology 0.9535 0.9209 0.91 spectfheart 0.6970 0.7943 0.7862

ecoli 0.8070 0.7917 0.798 tae 0.4050 0.5188 0.525

flare-solar 0.5554 0.6473 0.6594 tic-tac-toe 0.7307 0.7641 0.7349

german 0.7050 0.706 0.677 vehicle 0.7010 0.6868 0.681

glass 0.7361 0.6071 0.628 vowel 0.9939 0.6253 0.5677

haberman 0.6697 0.686 0.7384 wine 0.9552 0.933 0.9333

hayes-roth 0.3570 0.4687 0.5701 wisconsin 0.9557 0.9313 0.9571

heart 0.7704 0.8111 0.7778 yeast 0.5047 0.5552 0.5546

hepatitis 0.8075 0.8054 0.7608 zoo 0.9281 0.8786 0.905

when the (random) original selection of instances per class was not suitable for
these data sets. Thus, our local search strategy could benefit from a prelimi-
nary instance selection step before optimising the location of the instances, as
proposed in [30].

In order to understand the significance of the provided results, we applied
the Wilcoxon test to establish a fair comparison with the state-of-the-art. Table
5 displays the result of this comparison.

Table 5: Summary of the Wilcoxon test. The symbol •indicates that the method
in the row outperforms the method in the column. The symbol ◦indicates that
the method in the column outperforms the method of the row. Upper and diag-
onal of level significance 0.9 and 0.95, respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

NN (1) - • • • • • • • ◦ • ◦ ◦ ◦
LVQ3 (2) ◦ - ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
MSE (3) • - • • • • • ◦ • • ◦ ◦ ◦
DSM (4) ◦ ◦ - ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

LVQTC (5) • • - • • ◦ ◦ ◦ ◦ ◦
VQ (6) ◦ ◦ ◦ ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
AVQ (7) ◦ ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
HYB (8) ◦ • - ◦ ◦ ◦ ◦ ◦

LVQPRU (9) ◦ • ◦ • • • - ◦ ◦ ◦ ◦ ◦
ENPC (10) ◦ • - ◦ ◦ ◦ ◦ ◦
PSO (11) • • • • • • • • • • - • • ◦ •

AMPSO (12) • ◦ • ◦ - • ◦ ◦ ◦ ◦
PSCSA (13) ◦ ◦ - ◦ ◦ ◦ ◦
IPADE (14) • • • • • • • • • • • • - ◦ •

SSMA-SFLSDE (15) • • • • • • • • • • • • • • - • •
LSIR (16) • • • • • • • • • • ◦ - •

SALSIR (17) • • • • • • • • ◦ • • ◦ ◦ -

A Local Search with a Surrogate Assisted Option for Instance Reduction 13

Table 5 highlights that the hybrid SSMA-SFLSDE algorithm remains to be
the best algorithm, outperforming all the other methods. However, it should
be remarked that SSMA-SFLSDE is composed of two population-based meta-
heuristics (a binary search to select relevant instances, and an adjustment of the
position based on differential evolution). The selection of an appropriate number
of instances per class is a well-known issue for instance generation techniques
[29, 30], and the instance selection mechanism of SSMA-SFLSDE helps it to re-
duce overfitting and improve test accuracy. In this preliminary study, LSIR and
SALSIR are naively used without a careful selection of instances per class.

More generally, LSIR and SALSIR are remarkably simpler than all the metaheuristic-
based algorithms used in this study, and perform only a local search of the de-
cision space. Despite these limitations, we observe that the proposed methods
are competitive with a way more complex population-based metaheuristics such
as PSO and IPADE. This study can be viewed as a stepping stone towards the
generation of a hybrid algorithm that employs LSIR and SALSIR.

4.3 The effect of the surrogate

Regarding the performance of LSIR and SALSIR, we should make two consid-
erations. On the one hand, Table 3 shows that LSIR appears to outperform
SALSIR on both test and training accuracy. On the other hand, training results
suggest that the surrogate variant suffers from overfitting less than the its base-
line counterpart. However, the Wilcoxon test finds significant differences between
the two algorithms (in the test phase) at a level of significance α = 0.9 and that
LSIR tends to outperform SALSIR. As an example of this fact, Fig. 1 shows the
convergence plot on a single partition of the Bupa data. We can observe that
both algorithms progress steadily but LSIR marginally outperforms SALSIR.
This result was expected since a surrogate assisted algorithm often deteriorates
the performance of its counterpart that uses only the true objective function,
see e.g. [11, 19].

From the perspective of the computational saving, in the case depicted in Fig.
1, SALSIR saved 1991 evaluations with respect to LSIR. Since the purpose of a
surrogate assisted algorithm is to reduce the number of objective function calls,
we reported in Fig. 2 a histogram displaying the total number of evaluations and
the number of saved evaluations by the surrogate variant. On average, around
15% of the evaluations have been saved.

5 Conclusion

This paper proposed a local search algorithm for addressing the large scale chal-
lenges imposed by instance reduction problems. The proposed local search is
also endowed with a local surrogate model to mitigate the computational cost
generated by objective function calls. The proposed local search algorithm can
potentially be used within optimisation frameworks, such as portfolios, hyper-
heuristics, and memetic algorithms. Numerical results indicate that the use of

14 F. Neri and I. Triguero

 55

 60

 65

 70

 75

 80

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

F
it

n
es

s
v

al
u
e

Evaluations

Convergence Analysis (Bupa)

LSIR
SALSIR

Fig. 1: Convergence plot example on one partition of Bupa data set

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

ap
p

en
d
ic

it
is

au
st

ra
li

an au
t

b
al

b
an

d
s

b
re

b
u

p
a

ca
r

cl
ev

el
an

d

co
n
tr

ac
ep

ti
v

e

cr
x

d
er

m
at

o
lo

g
y

ec
o

li

fl
ar

e−
so

la
r

g
er

m
an

g
la

ss

h
ab

er
m

an

h
ay

es
−

ro
th

h
ea

rt

h
ep

at
it

is

h
o
u

se
v

o
te

s

ir
is

le
d

7
d

ig
it

ly
m

m
am

m
o

g
ra

p
h
ic

m
o
n

k
s

m
o

v
em

en
t

n
ew

th
y

ro
id

p
im

a

sa
h
ea

rt

so
n
ar

sp
ec

tf
h
ea

rt

ta
e

ti
c−

ta
c−

to
e

v
eh

ic
le

v
o
w

el

w
in

e

w
is

co
n

si
n

y
ea

st

zo
o

E
v
al

u
at

io
n

s

Datasets

Number of evaluations per dataset

Total Evaluations
Evaluations Saved

Fig. 2: Objective function calls saved by SALSIR (average 15%)

local search algorithms is a promising subfield of optimisation for addressing
instance reduction problems. The proposed local search, despite its algorithmic
naivety, outperformed numerous classical algorithms for instance reductions and
is competitive with sophisticated population-based metaheuristics representing
the state-of-the-art. The comparison between the versions with and without sur-
rogate assisted model shows that the proposed surrogate design/implementation
allows for an approximately 15% saving on the number of objective function calls,
with a relatively small loss in accuracy. As a future work, we will investigate the
integration of the proposed local search within advanced instance reduction al-
gorithms to address larger classification problems.

A Local Search with a Surrogate Assisted Option for Instance Reduction 15

References

1. Cano, J.R., Herrera, F., Lozano, M.: Using evolutionary algorithms as instance
selection for data reduction in KDD: an experimental study. IEEE Transactions
on Evolutionary Computation 7(6), 561–575 (Dec 2003)

2. Caraffini, F., Neri, F., Iacca, G.: Large scale problems in practice: The effect of
dimensionality on the interaction among variables. In: Squillero, G., Sim, K. (eds.)
Applications of Evolutionary Computation. pp. 636–652. Springer (2017)

3. Caraffini, F., Neri, F., Iacca, G., Mol, A.: Parallel memetic structures. Information
Sciences 227(0), 60 – 82 (2013)

4. Caraffini, F., Neri, F., Picinali, L.: An analysis on separability for memetic com-
puting automatic design. Information Sciences 265, 1–22 (2014)

5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory 13(1), 21–27 (1967)

6. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)

7. Garćıa, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE Transactions on Pattern
Analysis and Machine Intelligence 34(3), 417–435 (2012)

8. Garćıa, S., Cano, J.R., Herrera, F.: A memetic algorithm for evolutionary prototype
selection: A scaling up approach. Pattern Recognition 41(8), 2693 – 2709 (2008)

9. Garćıa-Pedrajas, N., de Haro-Garćıa, A., Prez-Rodrguez, J.: A scalable memetic
algorithm for simultaneous instance and feature selection. Evolutionary Computa-
tion 22(1), 1–45 (2014)

10. Hidalgo, B., Goodman, M.: Multivariate or multivariable regression? Am J Public
Health 103, 39–40 (2013)

11. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61 – 70 (2011)

12. Jobson, J.D.: Multiple Linear Regression, pp. 219–398. Springer (1991)

13. Krasnogor, N.: Toward Robust Memetic Algorithms. In: Hart, W.E., Krasnogor,
N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–207. Stud-
ies in Fuzzines and Soft Computing, Springer, Berlin, Germany (2004)

14. Krawczyk, B., Triguero, I., Garćıa, S., Woźniak, M., Herrera, F.: Instance reduction
for one-class classification. Knowledge and Information Syst. 59(3), 601–628 (2019)

15. Li, X., Yao, X.: Cooperatively Coevolving Particle Swarms for Large Scale Opti-
mization. Evolutionary Computation, IEEE Transactions on 16(2), 210–224 (2012)

16. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing Surrogate-assisted Evo-
lutionary Computation. IEEE Transactions on Evolutionary Computation 14(3),
329–355 (2010)

17. Lin, S.F., Cheng, Y.C.: A separability detection approach to cooperative particle
swarm optimization. In: Proceedings of the International Conference on Natural
Computation. pp. 1141–1145 (2011)

18. Nanni, L., Lumini, A.: Particle swarm optimization for prototype reduction. Neu-
rocomputing 72(4-6), 1092–1097 (2008)

19. Neri, F., Garcia, X.d.T., Cascella, G.L., Salvatore, N.: Surrogate Assisted Local
Search on PMSM Drive Design. COMPEL: International Journal for Computation
and Mathematics in Electrical and Electronic Engineering 27(3), 573–592 (2008)

20. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms beat evolutionary algorithms
on the class of hurdle problems. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 1071–1078. GECCO ’18, ACM (2018)

16 F. Neri and I. Triguero

21. de Oca, M.A.M., Cotta, C., Neri, F.: Local search. In: Neri, F., Cotta, C., Moscato,
P. (eds.) Handbook of Memetic Algorithms, pp. 29–41. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

22. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-Min Surrogate-Assisted Evolutionary Al-
gorithm for Robust Design. IEEE Trans. Evol. Comp. 10(4), 392–404 (2006)

23. Regis, R.G.: Surrogate-assisted particle swarm with local search for expensive con-
strained optimization. In: Korošec, P., Melab, N., Talbi, E.G. (eds.) Bioinspired
Optimization Methods and Their Applications. pp. 246–257. Springer (2018)

24. Ros, R., Hansen, N.: A simple modification in cma-es achieving linear time and
space complexity. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) Parallel Problem Solving from Nature – PPSN X. pp. 296–305. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

25. Tenne, Y., Goh, C.K.: Computational Intelligence in Expensive Optimization Prob-
lems. Springer Publishing Company, Incorporated (2010)

26. Tong, H., Huang, C., Liu, J., Yao, X.: Voronoi-based efficient surrogate-assisted
evolutionary algorithm for very expensive problems. In: IEEE Congress on Evolu-
tionary Computation. pp. 1996–2003 (2019)

27. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on
Optimization 7(1), 1–25 (1997)

28. Triguero, I., Derrac, J., Garćıa, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. IEEE Transactions on
Systems, Man, and Cybernetics–Part C 42(1), 86–100 (2012)

29. Triguero, I., Garćıa, S., Herrera, F.: IPADE: Iterative prototype adjustment for
nearest neighbor classification. IEEE Transactions on Neural Networks 21(12),
1984–1990 (2010)

30. Triguero, I., Garćıa, S., Herrera, F.: Differential evolution for optimizing the posi-
tioning of prototypes in nearest neighbor classification. Pattern Recognition 44(4),
901–916 (2011)

31. Triguero, I., Peralta, D., Bacardit, J., Garcia, S., Herrera, F.: A combined
mapreduce-windowing two-level parallel scheme for evolutionary prototype gen-
eration. In: IEEE Congr. on Evolutionary Computation. pp. 3036–3043 (2014)

32. Triguero, I., Gonzlez, S., Moyano, J.M., Garca, S., Alcal-Fdez, J., Luengo, J., Fern-
ndez, A., del Jess, M.J., Snchez, L., Herrera, F.: Keel 3.0: An open source software
for multi-stage analysis in data mining. International Journal of Computational
Intelligence Systems 10, 1238–1249 (2017)

33. Triguero, I., Peralta, D., Bacardit, J., Garćıa, S., Herrera, F.: MRPR: A mapreduce
solution for prototype reduction in big data classification. Neurocomputing 150,
331–345 (2015)

34. Tseng, L.Y., Chen, C.: Multiple trajectory search for Large Scale Global Opti-
mization. In: Proceedings of the IEEE Congress on Evolutionary Computation.
pp. 3052–3059 (2008)

35. Wang, Y., Yin, D., Yang, S., Sun, G.: Global and local surrogate-assisted differ-
ential evolution for expensive constrained optimization problems with inequality
constraints. IEEE Transactions on Cybernetics 49(5), 1642–1656 (2019)

36. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-
trajectory search for large-scale optimization. Soft Comput. 15(11), 2175–2185
(2011)

37. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.S.: Memetic algorithm using multi-
surrogates for computationally expensive optimization problems. Soft Computing
11(10), 957–971 (2007)

