
Automatic Generation of Adversarial
Metamorphic Malware Using MAP-Elites

Kehinde O. Babaagba[0000−0003−0786−2618], Zhiyuan Tan[0000−0001−5420−2554],
and Emma Hart[0000−0002−5405−4413]

School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, United
Kingdom {K.Babaagba,Z.Tan,E.Hart}@napier.ac.uk

Abstract. In the field of metamorphic malware detection, training a
detection model with malware samples that reflect potential mutants
of the malware is crucial in developing a model resistant to future at-
tacks. In this paper, we use a Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites) algorithm to generate a large set of novel, malicious
mutants that are diverse with respect to their behavioural and struc-
tural similarity to the original mutant. Using two classes of malware as a
test-bed, we show that the MAP-Elites algorithm produces a large and
diverse set of mutants, that evade between 64% to 72% of the 63 detec-
tion engines tested. When compared to results obtained using repeated
runs of an Evolutionary Algorithm that converges to a single solution re-
sult, the MAP-Elites approach is shown to produce a significantly more
diverse range of solutions, while providing equal or improved results in
terms of evasiveness, depending on the dataset in question. In addition,
the archive produced by MAP-Elites sheds insight into the properties
of a sample that lead to them being undetectable by a suite of existing
detection engines.

Keywords: Metamorphic Malware, MAP-Elites, Machine-Learning

1 Introduction

The proliferation of malicious attacks on networked devices and internet infras-
tructures at large has become a source of concern for companies and cyberse-
curity researchers. These attacks often emanate from a vast range of malicious
groups. One of such dangerous groups is metamorphic malware. These malware
transform their code between generations using various obfuscation techniques
thereby making detection difficult. These techniques include the insertion of junk
code into the original program code i.e. garbage code insertion, renaming vari-
ables in the original program code a process calling variable renaming among
others. [3] provides a comprehensive list of such techniques used by metamorphic
malware.

One recent approach to improving detection of metamorphic malware is
through the use of adversarial learning [11]: these approaches generate new ma-
licious input data (attacks) that reveals vulnerabilities in the detection models,



2 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

then improve detection models as a result. Adversarial learning has received sig-
nificant attention from cybersecurity experts recently for malware analysis and
detection as it gives insights to researchers on the processes malware writers use
in generating malware [7, 12,17].

However, the search for adversarial samples which comprise of several variants
of malware can be a difficult task as it involves the traversal of a large search
space of potential malicious variants. In addition, in order to drive improvements
in detection models, it is desirable to create as many new samples as possible
for a model to learn from, and furthermore, that the samples are as diverse as
possible to improve model generality. A number of evolutionary algorithms (EA)
have been proposed in the past to generate adversarial samples, for example in
the domains of pdf-malware [19] and in android malware [1, 2]. However, these
algorithms generate only a single new sample with each run of the algorithm:
given that most machine-learning approaches require large amounts of training
data, not only is it time-consuming to generate multiple samples in this way, but
in addition, there is no guarantee that the samples will be diverse. Furthermore,
existing methods do not provide much insight into the properties of the generated
samples.

To address this, we propose a solution that generates a set of variants that
are diverse with respect to two features, the Structural Similarity (SS(x)) and
Behavioral Similarity (BS(x)) of the variants with respect to the original mal-
ware. Specifically, we apply a quality-diversity algorithm — MAP-Elites [13] —
to generate a set of diverse variants that are optimised with respect to their abil-
ity to evade a large set of well-known detection engines. MAP-Elites algorithm
traverses a high-dimensional search space in search of the best solution at every
point of a feature space with low dimension defined by the user and is one of
a new raft of quality-diversity optimisation algorithms [14] that aim to return
an archive of diverse, high-quality behaviors in a single run. The algorithm has
multiple documented successes in evolutionary robotics [13], but also in design
applications, car wing-mirror design [8].

We address two questions in this paper:

1. How does diversity of samples produced by running MAP-Elites algorithm
compare to repeated executions of the standard Evolutionary algorithm de-
scribed in [2] and in Sect. 2?

2. How does the evasiveness of samples produced by MAP-Elites algorithm
compare to repeated executions of a standard Evolutionary algorithm?

The contributions of the paper is three-fold. To the best of our knowledge, this
is the first use of an illumination algorithm to generate a diverse set of adversarial
samples of mutant malware. The approach is rigorously evaluated in terms of
the number of samples generated, their evasiveness, and their diversity with
respect to two features that measure the behavioural and structural similarity
to the original malware. Secondly, we provide a comparison to results obtained
by running a single evolutionary algorithm multiple times in order to generate a
set of variants [2], comparing the same metrics as above. Results show that MAP-
Elites generates larger, more diverse sets of variants than the EA, while retaining



Title Suppressed Due to Excessive Length 3

approximately the same levels of performance (in terms of the evasiveness of
the samples generated). Finally, we provide novel insights into the factors that
contribute to evasiveness, based on the results obtained from the illumination
algorithm.

The rest of the paper is structured as follows. Section two presents a back-
ground of the work and reviews related works presenting distinguishing points
between this work and the related works. In section three, we present our
methodology. Our experimental design is explained in section four. We discuss
and analyse our results in section five. Section six concludes the paper and pro-
vides areas of future research work.

2 Background

Previous research has been geared towards creating evasive malware that goes
undetected by antivirus engines and other detectors. One of the pioneering sys-
tems used to assess the ability of antivirus engines in detecting evasive malware
is ADAM [20]. This system automatically transforms an original malware sam-
ple to different variants via repackaging and obfuscation techniques in order to
evaluate the robustness of different detection systems against malware mutation.
Similar to the work of [20] is DroidChameleon [16] which extends [20] by consid-
ering more advanced forms of attacks including metamorphic and polymorphic
attacks.

Recently, the use of evolutionary computing as a technique in the gener-
ation of evasive malware has been explored by a number of authors. Genetic
Programming was used by [19] to create pdf malware that evades detection by
pdf detectors while retaining their malicious functionality. [1] used Genetic Pro-
gramming (GP) to create a single malware variant that maximised an evasiveness
score when presented to 8 detection engines, however the characteristics of the
evolved malware were not considered. In addition, it is likely that many distinct
variants could map to the same fitness value, given that the fitness function takes
one of only 9 distinct values.

Inspired by this work, we recently proposed a mutation only EA [2] for gener-
ating adversarial samples. Our work advanced that of [1] in (1) evaluating a set
of new fitness functions that optimised for behavioral and structurally diverse
variants as well as for evasiveness and (2) extended the evaluation to a much
larger set of 63 detection engines. However in both this work and prior work of
[1], it was necessary to run the evolutionary engine multiple times to generate
a set of samples. While the work presented in [2] was shown in fact to lead to
some diversity across multiple runs, this cannot be guaranteed.

On contrast, the MAP-Elites algorithm was explicitly designed with the goal
of providing multiple high-performing solutions that are diverse with respect to
a user-defined feature-space [13]. The seminal paper showed that the technique
can illuminate the close links between performance and interesting features in
the search space as well as creating diverse and high quality solutions. Following
the initial work in the robotics domain, the algorithm has found application in



4 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

other domains such as video games, with the introduction of MAP-Elites with
Sliding Boundaries (MESB)[5] showing MAP-Elites ability to discover varying
and diverse styles of playing the game, and in the combinatorial optimisation
domain in evolving delivery schedules in a feature-space that includes carbon-
emissions and staff-costs [18].

Here, we use MAP-Elites algorithm in the malware analysis domain to gen-
erate new malicious variants that evade current detectors and are structurally
and behaviourally dissimilar to their parent malware. As far as we are aware,
this is the first time that this algorithm has been used in the exploration of the
search space of malware.

3 Methodology

In this section, we describe the malware mutant generator that uses MAP-Elites
algorithm to generate an archive of highly evasive but diverse mutants that can
be used as future training data by a machine-learning model.

3.1 MAP-Elites Algorithm

The algorithm is given in Alg. 1. First, an empty archive is created as a two-
dimensional grid defined by two features: the behavioural similarity and the
structural similarity of a solution to the original malware. The grid is divided in
20x20 equally sized cells: these are created by equally “binning” the range of each
feature (which take values between 0 and 1), thereby creating a potential archive
of 400 solutions. The algorithm is then initialised with a random population of
mutants, each created by applying a single mutation to the original malware.
After calculating the feature descriptor for the mutant (see Sect. 3.2, the mutant
is mapped to the corresponding cell in the archive).

Mutants are generated by applying a single mutation to an existing malware
by selecting a mutation operator at random from the following list:

– Garbage Code Insertion (GCI) - This inserts a piece of junk code, e.g. a line
number into the original program code.

– Instructional Reordering (IR)- This adds a goto statement in the original
program code that jumps to a label that does nothing.

– Variable Renaming (VR) - This renames a variable with another valid vari-
able name in the original program code.

As the original malware is in the form of an executable apk file, to create
mutants we first reverse engineer the apk by converting it to a smali format
using apktool1. Thereafter, we execute the following steps:

1. Apply a mutation operator to the smali code.
2. Recompile the smali to apk in order to test that the variant created is exe-

cutable.
1 APKTOOL - http://ibotpeaches.github.io/Apktool



Title Suppressed Due to Excessive Length 5

3. Sign the recompiled apk using apksigner2 and align using zipalign3.

4. Calculate the feature descriptor of the mutant.

5. Calculate the fitness of the mutant (detection-rate).

Subsequent solutions are created by random selection from the elites in the
map. Upon selecting each random elite, they are also mutated by applying a
randomly selected mutation operator from the list given above. New mutants
are placed in the archive if the corresponding cell is empty or replace an existing
solution in a cell if their fitness is better than the existing solution.

Algorithm 1. MAP-Elites algorithm for mutant generation, modified from [13]

1: procedure MAP-ELITES(I,G)
2: (E ← φ,X ← φ) . N-dimensional map of elites: mutants X and their

evasiveness E
3: for iter = 1→ I do . Repeat for I iterations
4: if iter > G then . Initialize by generating G random solutions created by

mutating original malware
5: x′ ← random solution()
6: else . Subsequent solutions are generated from elites in the map
7: x← random selection(X ). Randomly select an elite x from the map X
8: x′ ← random mutation(x) . Create a mutant of x
9: end if

10: if executable(x′) then . Confirm that mutated solution compiles and
executes

11: b′ ← feature descriptor(x′) . Calculate and record the behavioral and
structural similarity between x’ and the original malware

12: e′ ← evasiveness(x′) . Record the evasiveness e’ of x’
13: if E(b′) = φ or E(b′) > e′ then . If the appropriate cell is empty or its

occupants’s evasiveness is >= e’, then
14: E(b′)← e′ . store the value for evasiveness of x’ in the map of elites

according to its feature descriptor b’
15: X (b′)← x′ . store the solution x’ in the map of elites according to

its feature descriptor b’
16: end if
17: else
18: delete x′

19: end if
20: end for
21: return feature-evasiveness map (E and X )
22: end procedure

2 APKSIGNER - https://developer.android.com/studio/command-line/apksigner
3 ZIPALIGN - https://developer.android.com/studio/command-line/zipalign



6 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

3.2 Feature Descriptor

The feature descriptor of the mutants is defined by the behavioural and struc-
tural similarity between the original malware and a mutant. A behavioural sig-
nature of the mutant is derived from monitoring its system calls using Strace4

using Monkeyrunner5 to simulate user interaction. This creates a behavioural
signature represented as a vector of 251 elements, each corresponding to the
frequency of 251 possible system calls made by the mutant. The behavioural
similarity between the original malware and the mutant is calculated as the co-
sine similarity between the two system call vectors, returning a value between
0 and 1, where the former indicates that the original malware and the mutant
share no behavioral similarity while 1 means the original malware and the mu-
tant have equivalent behaviour.

The structural similarity between the mutants and the original malware is
measured using both text based and code level similarity metrics. The text based
similarity measures the cosine similarity, fuzzy string match [4] and Levenshtein
distance [10] between the original malware and the mutant. The code level sim-
ilarity on the other hand, uses the jplag and sherlock plagiarism detectors [9]
and normalised compression distance [15] in computing the similarity between
the original malware and the mutant. The similarity metrics are then averaged,
returning a value from 0 to 1 where 0 means the original malware and the mu-
tant are completely dissimilar and 1 means they are the same. These metrics are
chosen following previous work by [15].

3.3 Fitness Evaluation

The fitness of a mutant is measured in terms of its ability to evade a set of
well known detection engines. Mutants are evaluated using Virustotal6 which
comprises of 63 up-to-date antivirus engines and reports how many of its engines
flags a sample as malicious. The fitness measures the detection-rate, i.e. the
percentage of the antivirus engines that fail to detect a mutant. A detection-
rate of 0 denotes that no engine detected the variant while a value of 1 denotes all
the engines detected the mutant. The problem is thus treated as a minimisation
problem.

4 Experimental Design

The dataset utilised in this work is the Contagio Minidump7 which comprises
of mobile malware archived as APKs collected between the period of Decem-
ber 2011 and March 2013. We randomly select two samples belonging to two

4 Strace - https://linux.die.net/man/1/strace
5 Monkeyrunner - https://developer.android.com/studio/test/monkey
6 Virustotal - https://developers.virustotal.com/reference#getting-started
7 Contagio Minidump - http://contagiominidump.blogspot.com/2015/01/android-

hideicon-malware-samples.html



Title Suppressed Due to Excessive Length 7

families from this dump to serve as the parent malware. The parent malware
chosen belong to Dougalek8 and Droidkungfu9 family. Dougalek family is known
for stealing personal information from mobile phone users such as the user’s ac-
count details or contacts. The Droidkungfu family on the other hand is known
for privilege escalation and unauthorised remote control of mobile phones. Ex-
periments are conducted separately on each family.

To assess the quality of the MAP-Elites based mutant generator, we compare
its performance against that of an EA proposed in [2] for the same task. The EA
in [2] is a classical EA which uses a single objective performance-based fitness
function to drive evolution with no regard to features of the resulting solutions.
The EA is referred to from here on as MAL EA. MAL EA is a steady-state EA
that uses same mutation operators as the MAP-Elites based mutant generator
and no crossover. It uses tournament selection and replaces the worst solution in
the population with the best solution produced in the tournament provided that
it is better than the worst solution. The reader is referred to [2] for a detailed
description of this algorithm and parameter settings. The parameters used are
given in Table 1. The parameters used in MAL EA were derived following empir-
ical analysis. For MAP-Elites on the other hand, two of its parameters namely,
selection and mutation rate are standard settings from previous literature. How-
ever, as a result of the computational cost involved in running the experiments,
we limit the number of iterations to 120. The number of bootstrap iterations is
then set proportionally.

MAL EA

Parameter Setting

Selection Tournament

Population size 20

Iterations 120

Mutation rate 1

MAP-Elites

Parameter Setting

Selection Random Selection

Bootstrap 20

Iterations 120

Mutation rate 1

Table 1. Evolutionary based Parameter Settings

To compare between the MAL EA method proposed in [2] and the new MAP-
Elites approach proposed here, we use four standard metrics for measuring algo-
rithm performance which include global performance, coverage, reliability and
precision, taken from [13].

Global performance (equation:1) computes for each run, the fitness of the
single best performing solution s divided by the fitness of the best solution S
possible. Following the approach described in previous literature, as the theoret-
ical optimum is unknown, we take the value for the best solution possible to be
the single best solution obtained from any run of either algorithm. This is given

8 Dougalek - https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/androidosdougalek.a

9 Droidkungfu - https://www.f-secure.com/v-descs/trojan android droidkungfu c.shtml



8 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

as:
Global Performance =

s

S
(1)

Coverage (equation:2) measures how many cells of the feature space a run
of an algorithm is able to fill of the total number that are possible to fill. For
a single map, it is defined as number of filled cells n(fc) in the map divided by
the total number of cells that theoretically could be filled. As this number is
generally unknown, it is approximated by counting the total number of unique
cells that have been filled considering all runs of all algorithms n(Fc). Coverage
is therefore an indicator of diversity.

Coverage =
n(fc)

n(Fc)
(2)

The reliability metric measures for each run, the closeness of the best solution
found for each cell to the best possible performance for that cell, averaged over
the whole map. As above, as the best possible performance is unknown, the value
is approximated as the best solution obtained for the cell from any run of any
algorithm. Supposing that Mx,y represents the highest performing solution found
from all runs of the algorithm for both MAP-Elites and MAL EA at coordinate x,
y. Assuming that M = m1...mk is a vector which contains the final performance
map derived from every run of the algorithm for both MAP-Elites and MAL EA.
Then

Mx,y = max
{i∈[1,...,k]}

mi(x, y) (3)

The reliability of a performance map m is given as:

Reliability =
1

n(M)

∑
x,y

mx,y

Mx,y
(4)

where x, y ∈ {[xmin, ..., xmax; ymin, ..., ymax]}, and n(M) is count of unique
cells filled by any run of the algorithm for both MAP-Elites and MAL EA.

Precision is similar to reliability but for a single run, averages only the per-
formance of only cells that were filled for that run and provides an indication of
how high-performing a solution is relative to what is possible for that cell.

The precision of a performance map m is given as:

Precision =
1

n(M)

∑
x,y

mx,y

Mx,y
(5)

for x, y ∈ {[xmin, ..., xmax; ymin, ..., ymax]}|filledm(x, y) = 1, where filledm(x, y) =
1 is a matrix that takes on either value 1 in an (x, y) cell if the algorithm gen-
erated a solution in that cell or 0 otherwise and where n(M) is count of unique
cells filled by any run of the algorithm for both MAP-Elites and MAL EA.

Note that the standard definition of these metrics assumes a maximisation
problem, therefore in order to calculate these values, we define performance as
(1-detection rate), using the definition of detection rate given in section 3.3, i.e. a



Title Suppressed Due to Excessive Length 9

solution that was not detected by any of the antivirus engines has a performance
of 1.

To ensure a fair comparison, we run each algorithm for exactly same number
of fitness evaluations, i.e. 120. In the case of MAP-Elites, this includes bootstrap-
ping with G = 20 iterations (step 4 of the Alg. 1) and then running for 100 more
iterations (step 6 on-wards). 10 repeated runs are performed, each returning an
archive of solutions.

For the EA comparison experiments, as in [2], a population size of 20 is
used. The EA was run 10 times with each of the three fitness functions defined
in [2], the first optimising directly for evasiveness, the second optimising for
behavioral similarity and the third for structural similarity. Each run results in
a single solution, giving 30 variants in total which are then combined into a single
archive. The feature descriptor b is calculated for each of these 30 variants as
described above so that the results can be directly compared with MAP-Elites.

5 Results and Analysis

Here, we first provide a qualitative comparison between the MAP-Elites based
mutant generator and the EA from [2]. Then, using the metrics described in Sect.
4, we carry out a quantitative comparison. We then provide additional analysis
to gain insights into which of the anti-virus engines prove weakest in failing to
detect the evolved variants.

5.1 Qualitative Comparison of MAP-Elites and MAL EA

Figs. 1 and 2 show the maps obtained from merging the repeated runs of (a) the
EA and (b) MAP-Elites for both Dougalek and Droidkungfu families. The x and
y axes are defined by the selected feature descriptors, i.e. the behavioral (BS(x))
and structural similarity (SS(x)) between the original malware and the mutants
respectively. A value of 0 for each axis indicates 0% similarity and 1 represents
a 100% similarity between the original malware and the mutants. The color bar
represents the detection rates (DR(x)) of the mutants with a value of 0 meaning
0% of detectors detected the variants and 1 meaning 100% of detectors detected
the variants. For both the x and y axes as well as the detection rates, the lower
the values, the better. Hence, the lighter the shade of the filled cells in the map,
the better.

It is obvious from Fig. 1 that MAP-Elites generates a larger archive of solu-
tions than MAL EA for the Dougalek family. Although the solutions from both
algorithms cover approximately the same range for each feature, the MAL EA
map is sparsely occupied with the 30 solutions obtained from the multiple runs
filling only 12 cells: this indicates a lack of diversity with respect to the two
features obtained from multiple runs of the EA. In contrast, MAP-Elites finds
50 solutions that are evenly distributed along the range of each feature. Similar
observations apply to the Droidkungfu archives shown in Fig. 2. Although the
range of the structural similarity feature extends more widely in the MAL EA



10 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

(a) MAL EA (b) MAP-Elites

Fig. 1. Performance map of MAL EA and MAP-Elites for Dougalek family

archive than that observed in the MAP-Elites archive, MAP-Elites finds solu-
tions that are distributed more consistently across the range, as opposed to the
more sparse distribution found by MAL EA. For this malware, the 30 solutions
obtained by MAL EA occupy only 14 cells, again in stark contrast to that of
MAP-Elites which finds a diverse set of solutions occupying 44 cells.

(a) MAL EA (b) MAP-Elites

Fig. 2. Performance map of MAL EA and MAP-Elites for Droidkungfu family

5.2 Quantitative Comparison of MAP-Elites and MAL EA

In Figs. 3 and 4, we show the performance of both MAP-Elites and MAL EA
in terms of the global performance, coverage, reliability and precision metrics



Title Suppressed Due to Excessive Length 11

Performance Coverage Reliability Precision

Dougalek MAP-Elites 0.94 0.5 0.48 0.96
MAL EA 0.92 0.06 0.06 0.97

Droidkungfu MAP-Elites 0.85 0.49 0.46 0.94
MAL EA 0.86 0.07 0.07 0.97

Table 2. The table shows the median results obtained for the 4 metrics on each dataset.
Values in bold indicate the best performing algorithm where the difference between the
medians is statistically significant (at a level of 0.05).

for both Dougalek and Droidkungfu families. Mann-Whitney U tests with a
95% confidence interval are used to determine statistical significance. Table 2
provides a summary of the median results derived for the 4 metrics on each
dataset. Values are given in bold where the p-value indicates significance at a
confidence level of 0.05. Where neither values is shown in bold, the significance
test failed to reject the null hypothesis that the distributions are different.

We see from Table 2 that for Dougalek, MAP-Elites does significantly bet-
ter than MAL EA in terms of global performance, reliability and coverage. For
precision however, the significance tests fails to reject the null hypothesis that
the distributions are different.

For Droidkungfu, MAP-Elites performs significantly better than MAL EA
for coverage and reliability. In terms of global performance, the significance test
failed to reject the null hypothesis that the distributions are different. In terms
of the precision metric, MAL EA outperforms MAP-Elites with the statistical
test showing this difference is significant, i.e. when MAL EA is able to fill a cell,
it reliably finds a high-performing solution for the cell.

Parameter Dougalek Droidkungfu

MAP-Elites MAL EA MAP-Elites MAL EA

Best 0.28 0.28 0.18 0.06

Median 0.32 0.34 0.2 0.19

Worst 0.33 0.46 0.21 0.33

Original Malware 0.6 0.35

Table 3. Fitness of the best, median and worst variants produced by MAP-Elites and
MAL EA, where fitness is defined by the detection-rate, i.e. the percentage of detectors
that recognise the variant as malicious. Hence, 0 represents a failure of all 63 detectors.

From Table 3, we see that both MAL EA and MAP-Elites produce vari-
ants that are more evasive than the original malware for both Dougalek and
Droidkungfu, i.e their detection rates are lower. For Dougalek, both methods
produce a variant that is only detected by 28% of the detectors (compared to
the original malware that was detected by 60%). For Droidkungfu, MAL EA
produces a single variant that is only detected by 6% of the detection engines,
outperforming MAP-Elites in which the single best variant is detected by 18%.



12 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

(a) Global Perfor-
mance

(b) Coverage (c) Reliability (d) Precision

Fig. 3. Boxplots of Global Performance, Coverage, Reliability and Precision for
MAL EA and MAP-Elites for Dougalek family

(a) Global Perfor-
mance

(b) Coverage (c) Reliability (d) Precision

Fig. 4. Boxplots of Global Performance, Coverage, Reliability and Precision for
MAL EA and MAP-Elites for Droidkungfu family



Title Suppressed Due to Excessive Length 13

Although the median values are similar, the worst variant produced by MAP-
Elites is more evasive than the worst variant from MAL EA for both Dougalek
and Droidkungfu.

In summary, MAP-Elites consistently outperforms the EA in terms of the
coverage and reliability metrics, while finding solutions that are better or com-
parable in terms of the performance metric. Although for the Droidkungfu fam-
ily, the single most evasive variant is found by MAL EA, recall that the goal of
the study is to produce a set of diverse, hard to detect variants to provide an
improved training set for a machine-learning algorithm: in this respect a diverse
set of evasive variants is significantly preferable to a small set of highly evasive
variants.

5.3 Analysis of the antivirus engines

In order to gain more insight into which engines are most susceptible to potential
mutated versions of the original malware, we determine the percentage of new
variants evolved using MAP-Elites that a detector fails to recognise. We only
consider the engines which recognised the original parent malware in this analysis
in order to understand which engines are vulnerable to potential mutants and
which remain capable of detecting the malware. The results are shown for each
malware family in Figs. 5(a) and 5(b).

It can be seen from Fig. 5(a), that 9 of the 37 engines that detected the
original Dougalek parent malware also recognise all of the mutants evolved by
MAP-Elites. Examples include Avast Mobile, Avira and Tencent. At the other
extreme, 12 engines failed to detect 100% of the newly generated mutants. Ex-
amples include GData, Symantec, BitDefender and McAfeeGW. For the Droid-
kungfu malware, 4 of the 21 engines that detected the original malware also
detect all of the evolved mutants. Examples again include the Avast Mobile and
Avira engines that also proved robust to the Dougalek mutants. Three of the
21 engines failed to recognise all of the evolved mutants — AegisLab, DrWeb
and McAfeeGW. We note that the McAfeeGW engine appears very vulnerable
to both families of metamorphic malware.

6 Conclusion

The ability of metamorphic malware to change its code over time poses signifi-
cant challenges for detection models that are trained on static sets of data. One
approach to this is to train models with datasets that include potential variants
of the malware. It is therefore desirable to create new datasets that a) contain
large numbers of new malicious samples and b) that those samples are as di-
verse as possible in order to maximise the performance of the model. In order to
challenge the model and drive improvements, it is also desirable to create new
samples that are highly evasive with respect to current detection methods.

Quality-Diversity (QD) algorithms that produce diverse archives of high-
performing solutions offer an obvious solution to this problem. Although they



14 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

(a) Dougalek

(b) Droidkungfu

Fig. 5. Percentage of the mutants evolved from MAP-Elites that a specific detection
engine failed to recognise for (a) Dougalek and (b) Droidkungfu



Title Suppressed Due to Excessive Length 15

have proved effective in a range of domains in recent years, we believe this to be
their first use in generating a diverse set of adversarial malware samples within
the metamorphic malware detection domain. We have shown that MAP-Elites —
an example of a QD algorithm — is capable of generating high-performing and
diverse samples for two malware families. When compared to an EA (MAL EA
[2]), it produces larger sets of data with more diversity (with 50% (Dougalek) and
49% (Droidkungfu) coverage for MAP-Elites, as opposed to MAL EA’s coverage
of 0.06% (Dougalek) and 0.07% (Droidkungfu)), while still producing comparable
performance in terms of minimising detection rates. There remains significant
scope to optimise the model suggested, particularly in terms of investigating an
appropriate size for the archive and running the algorithm over longer periods
to increase coverage.

We believe that quality-diversity algorithms are a ripe avenue for exploration
in this field, particularly if they can be combined in a setting typical in generative
adversarial networks (GAN [6]) in which improvements in the generated samples
drive improvements in the detection method and vice versa. This will form the
basis of future work.

References

1. Aydogan, E., Sen, S.: Automatic generation of mobile malwares using genetic pro-
gramming. In: Mora, A.M., Squillero, G. (eds.) Applications of Evolutionary Com-
putation. pp. 745–756. Springer International Publishing, Cham (2015)

2. Babaagba, K.O., Tan, Z., Hart, E.: Nowhere metamorphic malware can hide - a
biological evolution inspired detection scheme. In: Wang, G., Bhuiyan, M.Z.A.,
De Capitani di Vimercati, S., Ren, Y. (eds.) Dependability in Sensor, Cloud, and
Big Data Systems and Applications. pp. 369–382. Springer Singapore, Singapore
(2019)

3. Bruschi, D., Martignoni, L., Monga, M.: Code normalization for self-mutating mal-
ware. IEEE Security and Privacy 5(2), 46–54 (2007)

4. Dhakal, A., Poudel, A., Pandey, S., Gaire, S., Baral, H.P.: Exploring deep learning
in semantic question matching. In: 2018 IEEE 3rd International Conference on
Computing, Communication and Security. pp. 86–91. ICCCS ’18 (2018)

5. Fontaine, M.C., Lee, S., Soros, L.B., De Mesentier Silva, F., Togelius, J., Hoover,
A.K.: Mapping hearthstone deck spaces through map-elites with sliding bound-
aries. In: Proceedings of the Genetic and Evolutionary Computation Conference.
pp. 161–169. GECCO ’19, ACM, New York, NY, USA (2019)

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

7. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial
examples for malware detection. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
Computer Security – ESORICS 2017. pp. 62–79. Springer International Publishing,
Cham (2017)

8. Hagg, A., Asteroth, A., Bäck, T.: Modeling user selection in quality diversity. In:
Proceedings of the Genetic and Evolutionary Computation Conference. pp. 116–
124. GECCO ’19, ACM, New York, NY, USA (2019)



16 Kehinde O. Babaagba , Zhiyuan Tan, and Emma Hart

9. Heres, D.: Source Code Plagiarism Detection using Machine Learning. Ph.D. thesis,
Utrecht University (2017)

10. H.Gomaa, W., A. Fahmy, A.: A Survey of Text Similarity Approaches. Interna-
tional Journal of Computer Applications (2013)

11. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining. pp.
641–647. KDD ’05, ACM, New York, NY, USA (2005)

12. Maiorca, D., Biggio, B., Giacinto, G.: Towards adversarial malware detection:
Lessons learned from pdf-based attacks. ACM Comput. Surv. 52(4), 78:1–78:36
(2019)

13. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites (2015)
14. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for evo-

lutionary computation. Frontiers in Robotics and AI 3, 40 (2016)
15. Ragkhitwetsagul, C., Krinke, J., Clark, D.: A comparison of code similarity anal-

ysers. Empirical Software Engineering 23(4), 2464–2519 (2018)
16. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: Evaluating android anti-malware

against transformation attacks. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security. pp. 329–334. ASIA
CCS ’13, ACM, New York, NY, USA (2013)

17. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples in malware de-
tection. In: 2019 IEEE Security and Privacy Workshops. pp. 8–14. IEEE SPW ’19
(2019)

18. Urquhart, N., Hart, E.: Optimisation and illumination of a real-world workforce
scheduling and routing application (wsrp) via map-elites. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem
Solving from Nature – PPSN XV. pp. 488–499. Springer International Publishing,
Cham (2018)

19. Xu, W., Qi, Y., Evans, D.: Automatically Evading Classifiers: A Case Study on
PDF Malware Classifier. In: 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA. The Internet Society (2016)

20. Zheng, M., Lee, P.P.C., Lui, J.C.S.: Adam: An automatic and extensible platform
to stress test android anti-virus systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) Detection of Intrusions and Malware, and Vulnerability Assessment. pp.
82–101. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)


