
Improving the Performance of Cryptographic
Voting Protocols

Rolf Haenni1, Philipp Locher1, and Nicolas Gailly2

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{rolf.haenni,philipp.locher}@bfh.ch

2 École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
nicolas.gailly@epfl.ch

Abstract. Cryptographic voting protocols often rely on methods that
require a large number of modular exponentiations. Corresponding per-
formance bottlenecks may appear both on the server and the client side.
Applying existing optimization techniques is often mentioned and rec-
ommended in the literature, but their potential has never been analyzed
in depth. In this paper, we investigate existing algorithms for computing
fixed-base exponentiations and product exponentiations. Both of them
appear frequently in voting protocols. We also explore the potential of
applying small-exponent techniques. It turns out that using these tech-
niques in combination, the overall computation time can be reduced by
two or more orders of magnitude.

1 Introduction

Parties involved in cryptographic protocols often need to calculate a large num-
ber of modular exponentiations z = be mod p (modexp) with large numbers b, e,
and p.3 With regard to performance, other computational tasks are often negligi-
ble. This is why optimizing modexp computations is the most promising option
for improving the overall performance of an online voting system. Often, par-
ticular attention must be given to the client side, especially if it is implemented
as a web application in JavaScript, which is known for its limited performance
relative to native-code applications. Clearly, computational bottlenecks on the
client may lead to critical usability problems and should therefore be avoided.

1.1 Problem Description and Context

In this paper, we consider the common setup of an ElGamal encryption scheme,
which is often used for encrypting votes in cryptographic voting protocols. Let
p denote a safe prime and Z∗p = {1, . . . , p− 1} the corresponding multiplicative
group of integers modulo p. This group has a sub-group Gq ⊂ Z∗p of prime order

3Exponentiations in groups such as elliptic curves, where the potential of applying
the same type of optimizations is exactly the same, are less frequently used in vot-
ing protocols. Here we focus on multiplicative groups of integers modulo p, but our
theoretical results are all applicable to the general case.

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
9
5
5
2

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
4
.
2
0
2
4

q = p−1
2 , for which the decisional Diffie-Hellman (DDH) problem is believed

to be hard. Since q is prime, all elements of Gq \ {1} are generators of Gq.
For such a generator b ∈ Gq and an exponent e ∈ Zq, computing the modular
exponentiation z = Exp(b, e, p) = be mod p ∈ Gq is the basic computational task
considered in this paper. According to current recommendations [3], we have to
deal with numbers of following bit lengths:

2048 ≤ |p|, 2 ≤ |b| ≤ |p|, 112 ≤ |e| ≤ |p| − 1, |z| = |p|.

In our theoretical analysis of different modexp algorithms, we will see that ` = |e|
is one of the main parameters that determines the running time. If ` is equal
or close to the above lower bound, we call e a short exponent.4 Similarly, b is a
short base, if |b| is equal or close to 2. In all cases, we assume that b and e are
drawn from a random uniform distribution.

The computational task considered in this paper consists of N different mod-
exp instances for the same modulo p. Therefore, let b = (b1, . . . , bN) ∈ GNq and

e = (e1, . . . , eN) ∈ ZNq denote the given vectors of values bi and ei. In the most
general case, we need to compute values zi = Exp(bi, ei, p) independently. The
corresponding multiple exponentiation problem is denoted by

z = MultiExp(b, e, p) ∈ GNq ,

where z = (z1, . . . , zN) is the vector of output values. We use MultiExp as ref-
erence point for judging the benefits of optimization algorithms, which can be
applied to the following two special cases:

– Product Exponentiation. Compute the product z =
∏N
i=1 zi mod p of values

zi = Exp(bi, ei, p) for inputs b = (b1, . . . , bN) and e = (e1, . . . , eN):

z = ProductExp(b, e, p) ∈ Gq.

– Fixed-Base Exponentiation. Compute z = (z1, . . . , zN) of values zi = Exp(b, ei, p)
for inputs b = (b, . . . , b) and e = (e1, . . . , eN):

z = FixedBaseExp(b, e, p) ∈ GNq .

A similar special case arises for e = (e, . . . , e). However, since the benefits of
algorithms for solving such fixed-exponent exponentiation problems are rather
limited (see [10, Section 14.6.2]), we do not consider them in this paper.

4There are multiple reasons for working with short exponents. In certain applica-
tions of some cryptographic schemes, a much smaller subgroup Gq ⊂ Z∗

p is sufficient.
To resist against the best available DL algorithms, the minimal bit length of q in such
cases is 2λ, where λ denotes the security strength, for example |q| = 224 for λ = 112.
Corresponding exponents e ∈ Zq are then inherently restricted to |q| bits. In larger
groups, smaller exponents are sometimes selected on purpose, for example in the case
of a challenge c ∈ Z2λ in a zero-knowledge proof or in systems relying on the short-
exponent discrete logarithm (DLSE) assumption, in which short exponents e ∈ Z22λ

deliver the same provable security under a slightly stronger intractability assumption.
For example, using the ElGamal encryption scheme with short randomizations has
been proven IND-CPA secure under the DLSE assumption [7].

1.2 Contribution and Paper Overview

The goal of this paper is to increase public awareness of the potential perfor-
mance benefits that results from applying the most appropriate modexp algo-
rithms to a particular given computational task in a cryptographic voting pro-
tocol. The state-of-the-art algorithms for solving MultiExp, FixedBaseExp, and
ProductExp most efficiently are presented in Section 2. We summarize the al-
gorithmic and theoretical background of the available methods and provide an
analysis of the expected computational costs. Since all algorithms are parame-
terized, we give instructions for finding optimal algorithm parameters in a given
cryptographic setup. The maximal performance benefits when running the algo-
rithms with optimal parameters are analyzed for FixedBaseExp and ProductExp.
For some of the presented algorithms, we are not aware of any references in the
literature. One of the presented algorithm turns out to be equivalent to the well-
known comb method [9], but we believe that our description is more intuitive.

A more practical perspective of this topic is given in Section 3. The tar-
get audience of this section are practitioners and developers of online voting
systems designed for real-world elections. We performed different performance
tests for various algorithms and measured their effective running times on differ-
ent platforms. A special focus is given to the client side, in which performance
bottlenecks are more likely to appear.

2 Performance Analysis of Exponentiation Algorithms

Most programming languages or mathematical libraries providing large number
arithmetic have a built-in support for modexp computations. They usually im-
plement general-purpose modexp algorithms from [10], for example Alg. 14.82,
Alg. 14.83, or Alg. 14.85, which we will later call HAC14.82, HAC14.83, and
HAC14.85. Using such algorithms, the average time for solving MultiExp is ex-
actly N times the average time for solving Exp. General algorithms for Exp are
discussed in Section 2.2. We will use them as reference points for evaluating
the performance of several optimization algorithms. The results obtained for
ProductExp and FixedBaseExp are discussed in Sections 2.3 and 2.4.

2.1 Measurement Methodology

In our theoretical analysis of an algorithm Alg for solving Exp(b, e, p), we count
the number MAlg(`) of multiplications needed for exponents of length ` = |e|.
For reasons of simplicity, we do not distinguish between squaring and multiplica-
tion operations, i.e., we assume that they are equally expensive, which may not
necessarily be true in every library. In case of ProductExp and FixedBaseExp algo-
rithms for `-bit exponents, we count the total number MAlg(`,N) of multiplica-
tions needed to solve the entire problem. To compare them with general-purpose
algorithms, we compute the average number of multiplications per modexp,

M̃Alg(`,N) =
MAlg(`,N)

N
,

and call it relative (theoretical) running time of Alg. Both MAlg(`) and M̃Alg(`,N)
may depend on algorithm parameters κ1, . . . , κr. We either include them explic-
itly in our notation as Mκ1,...,κr

Alg (`) and M̃κ1,...,κr
Alg (`,N), or we skip them to

indicate that optimal parameters κopti have been chosen:

Mopt
Alg (`) := M

κopt
1 ,...,κopt

r

Alg (`) and M̃opt
Alg (`,N) := M̃

κopt
1 ,...,κopt

r

Alg (`,N).

If we take Mopt
Alg∗(`) of a general-purpose modexp algorithm Alg∗ as reference

point for evaluating the performance of an optimization algorithm Alg, both
of them instantiated with optimal algorithm parameters, we can measure the
benefit of Alg relative to Alg∗ by computing the fraction

µAlg(`,N) = Mopt
Alg∗(`) / M̃opt

Alg (`,N).

This number will be called (theoretical) impact factor of algorithm Alg in problem
instances of size N and exponents of size `. To measure the benefit of combining
an optimization algorithm Alg with short-exponent techniques, for example in a
setting with `long = 2047 and `short = 224, we compute the fraction

µ∗Alg(`long, `short, N) = Mopt
Alg∗(`long) / M̃

opt
Alg (`short, N).

All modexp algorithms described in this section can benefit more or less equally
from techniques known as Montgomery or Barrett reduction as described as
Alg. 14.32 and Alg. 14.42 in [10]. We do not study their potential in this paper.

2.2 General-Purpose Exponentiation Algorithms

The most fundamental problem considered in this paper is the computation of
a single value z = Exp(b, e, p). A widely implemented algorithm is the window
method as described in HAC14.82, in which the `-bits exponent is written as
e = (et−1 · · · e1e0)B in base B = 2k. The parameter k is called window size and
t = d `k e denotes the number of windows ei ∈ Z2k . The algorithm processes the
bits of each window en bloc by decomposing be using Horner’s method:

be = b
∑t−1
i=0 eiB

i

= be0(be1(be2 · · · (bet−2(bet−1)B)B · · ·)B)B .

This expression can be evaluated from inside to outside starting with the left-
most window et−1. The resulting iteration corresponds to HAC14.82. If all values
bei have been precomputed and stored in a table, then the iteration requires
k(t− 1) squarings and t− 1 = b `−1k c multiplications. The precomputation table
may contain up to 2k entries, which can be computed using 2k−2 multiplications.

To reduce the size of this table and therefore to improve the overall compu-
tation time, consider the decomposition of each ei 6= 0 into ei = ui2

vi such that
ui is odd (et−1 remains untouched). For ei = 0, let ui = vi = 0. This leads to

be = (bu0((bu1((bu2 · · · ((but−2(bet−1)2
k−vt−2

)2
vt−2 · · ·)2

k−v1
)2
v1

)2
k−v0

)2
v0
,

from which the improved window algorithm HAC14.83 follows. Here, the pre-
computation table of all possible odd values ui ∈ Z2k contains at most 2k−1

entries, which can be generated using the same amount of multiplications.

To compute the running time of HAC14.83 as precisely as possible, we have
to take into account that e may contain some windows ei = 0. We assume
that such cases, in which one multiplication is saved, appear with probability

Pk = 2k−1
2k
∈ [0.5, 1). This leads to

Mk
HAC14.83(`) = 2k−1 + (k + Pk)

⌊
`− 1

k

⌋
+ 1 < 2k−1 + ` · k + 1

k
,

which we will later use as reference point for evaluating the performance of
several optimization algorithms.5

The remaining question regarding the window method is the selection of the
optimal parameter kopt that minimizes MHAC14.83(k, `). To get the desired value
for a given `, we can either solve d

dk [Mk
HAC14.83(`)] = 0 numerically, for example

using Newton’s method, or perform an exhaustive search over 1 ≤ k ≤ `. The
results for 80 ≤ ` ≤ 15360 are summarized in Table 1. The mapping from ` to
kopt is unique within the ranges given in Table 1, but not in the areas between
these ranges, where kopt jumps forth an back between two adjacent values.

` 82–184 217–545 566–1434 1465–3759 3802–9368 >9425

kopt 4 5 6 7 8 9

Table 1: Optimal window sizes kopt in HAC14.83 for different exponent lengths `.

An even better performance offers the sliding window method as implemented
in HAC14.85, in which one multiplication can be saved in the average after pro-
cessing k

2 windows, i.e., 2t
k multiplications can be saved in total. Since this is

a non-negligible quantity, HAC14.85 is the recommended method in [10]. Nev-
ertheless, HAC14.82 and HAC14.83 (and even HAC14.79) are implemented in
some arithmetic libraries for large integers.

As a numerical example, consider the common cryptographic setting with
|p| = 2048 and exponents of length ` = |e| = 2047. In this case, we select
kopt = 7 for getting the best possible running time Mopt

HAC14.83(2047) = 2401.
This is about 22% faster than standard square-and-multiply, which corresponds
to M1

HAC14.83(2047) = 3071 for windows of size k = 1. Using the sliding window
method, the performance improves by another 3% to Mopt

HAC14.85(2047) = 2318.

2.3 Algorithms for Product Exponentiations

Product exponentiation problems ProductExp(b, e, p) can be solved in a näıve

way by computing the product z =
∏N
i=1 zi mod p of the results zi obtained

from calling an algorithm from the previous section separately for all N pairs
(bi, ei). As we will see in this section, this is far from being an optimal solution.

5The precomputation of HAC14.82, HAC14.83, and HAC14.85 gets much faster for
a small base. For values such as b = 2 or b = 4, multiplication during precomputation
corresponds to shifting the bits a few positions to the left (modulo p), which is obviously
much faster than regular multiplications. In such a case, our theoretical analysis based
on counting modular multiplications gets inaccurate.

A special-purpose algorithm for this problem is HAC14.88, but it only performs
well for small N . The reasons for this is the size of the precomputation table,
which grows exponentially with N . The total relative running time is as follows:

M̃HAC14.88(`,N) =
(2N −N − 1) + (`− 1)(1 + PN)

N
<

2N + 2`

N
.

If ` is fixed in this expression, we can derive the problem size N for which
the algorithm performs best. For ` = 2047, the best relative running time is
M̃HAC14.88(2047, 9) = 510, which we get for N = 9. For this particular case, the
algorithm performs almost five times better than HAC14.83, but it quickly starts
to perform (much) worse when N gets larger. In the light of these considerations,
applying HAC14.88 directly for solving ProductExp is only possible for very small
problem instances. However, it can be used as a building block for algorithms
that perform well in general. The most obvious way is to split the full task into
s = bNmc sub-tasks of size m and one sub-task of size r = N mod m.

To formalize this idea, let Ij = {jm+ 1, . . . , jm+m} be the indices of sub-
task 0 ≤ j ≤ s − 1 and Is = {sm + 1, . . . , N} the set of indices of sub-task s.
The problem can then be decomposed into

z =

N∏
i=1

aeii mod p =

s∏
j=0

∏
i∈Ij

aeii mod p =

s∏
j=0

ProductExp(bj , ej , p),

where bj and ej denote corresponding sub-vectors from b = b0|| · · · ||bs and
e = e0|| · · · ||es. The relative running time of the resulting Alg.1 is as follows:

M̃m
Alg.1(`,N) =

sm · M̃HAC14.88(`,m) + r · M̃HAC14.88(`, r) + s

N
≈ M̃HAC14.88(`,m).

It follows that this algorithm performs best by selecting the parameter m ac-
cording to the above discussion of the optimal value N in HAC14.88. As an
example, we select mopt = 9 for ` = 2047, which leads to M̃opt

Alg.1(2047, N) = 510
and µAlg.1(2047, N) = 4.7 for large input sizes N . For a setting with `long = 2047
and `short = 224, we get mopt = 7 and µ∗Alg.1(2047, 224, N) = 29.99.

The benefit of Alg.1 is already appealing, but it can be improved even further.
For this, we need to drill a hole into HAC14.88, by placing the squaring operation
in Step 3 outside the brackets over all sub-tasks of Alg.1. In Alg.2, we assume
that N is a multiple of m, which we can always achieve by filling up the inputs
with m− r additional values bi = 1 and ei = 0. Furthermore, let Ej ∈ {0, 1}m×`
be the binary exponent array of ej , whose rows are the binary representations
of the exponents from ej [10]. Let Ej [l] denote the l-th column of Ej .

In the resulting Alg.2, which is a synthesis of Alg.1 and HAC14.88, we initially
perform the precomputation for all s sub-tasks. In the main loop of the algorithm,
we see that the loop over the sub-tasks only performs one multiplication in each
step, but no squarings. This reduces the total number of squarings from s ·(`−1)
to `−1. Therefore, the relative running time of Alg.2 is strictly smaller than the

Algorithm: ProductExpm(b, e, p)

Input: Bases b = b0|| · · · ||bs
Exponents e = e0|| · · · ||es

Modulus p
Sub-task size 1 ≤ m ≤ N

z ← 1
for j = 0, . . . , s do

zj ← HAC14.88(bj , ej , p)
z ← z · zj mod p

return z

Algorithm 1: Simple product ex-
ponentiation algorithm based on
HAC14.88.

Algorithm: ProductExpm(b, e, p)

Input: Bases b = b0|| · · · ||bs−1

Exponents e = e0|| · · · ||es−1

Modulus p
Sub-task size 1 ≤ m ≤ N

for i = 0, . . . , 2m − 1 do
(im−1, . . . , i0)2 ← i
for j = 0, . . . , s− 1 do

(b0, . . . , bm−1)← bj

Bij ←
∏m−1

l=0 b
il
l mod p

z ← 1
for l = 0, . . . , `− 1 do

z ← z2 mod p
for j = 0, . . . , s− 1 do

i← Ej [l]
z ← z ·Bij mod p

return z

Algorithm 2: Improved product
exponentiation algorithm based on
HAC14.88 and Alg.1.

relative running time of Alg.1:

M̃m
Alg.2(`,N) =

s · (2m −m− 1) + (`− 1) + (`s− 1) · Pm
N

<
2m + `

m
+

`

N
.

To compare this result with the numbers from above, we select mopt = 9 for ` =
2047 (see Table 2), which leads to M̃opt

Alg.2(2047, N) = 282 and µAlg.2(2047, N) =

8.51 for large input sizes N . For `long = 2047 and `short = 224, we select mopt = 6
to get µ∗Alg.2(2047, 224, N) = 52.15. In both settings, Alg.2 is therefore approxi-
mately 45% more efficient than Alg.1. Note that we are not aware of any pub-
lished document, in which Alg.2 is described and analyzed in this way.

To conclude our analysis of product exponentiation algorithms, we show in
Table 2 the mapping from 80 ≤ ` ≤ 15360 to mopt in a similar way as for kopt in
Table 1, i.e., with some fuzzy areas between the ranges of two adjacent values.
It shows that for Alg.2 the optimal parameter mopt is usually smaller than for
Alg.1. This implies that Alg.2 benefits from smaller precomputation tables.

Alg.1
` 80–168 180–397 415–914 939–2068 2101–4625 4666–10270 >10321

mopt 6 7 8 9 10 11 12

Alg.2
` 80–147 174–349 380–802 845–1839 1896–4148 4231–9284 >9285

mopt 5 6 7 8 9 10 11

Table 2: Optimal sub-task size mopt for different exponent lengths ` in Alg.1 and Alg.2.

2.4 Algorithms for Fixed-Base Exponentiations

Two of the most common and frequently cited fixed-base exponentiation algo-
rithms are the fixed-base windowing method by Brickell et al. [2] and the comb
method by Lim and Lee [8,9]. Brickell’s method is strictly less efficient than the
comb method, which itself can be seen as a generalization of the following idea.
Let z = FixedBaseExp(b, e, p) be the problem instance to solve for given inputs b,
e = (e1, . . . , eN), and p. Similar to the window method of Section 2.2, we define
a bit length 1 ≤ k ≤ `, into which the exponents are decomposed. If we consider
a single exponent e, we write it as e = (et−1 · · · e1e0)B in base B = 2k, where
t = d `k e denotes the resulting number of sub-exponents ei of length k.

This decomposition of the exponent allows us to transform the computation
of be into a product exponentiation problem of size t, which can be solved using
HAC14.88, Alg.1, or Alg.2:

be = b
∑t−1
i=0 eiB

i

=

t−1∏
i=0

beiB
i

=

t−1∏
i=0

(bB
i

)ei =

t−1∏
i=0

(b2
ik

)ei

= ProductExp((b0, . . . , bt−1), (e0, . . . , et−1)), p), for bi = b2
ik

.

The crucial point to observe here is that b = (b0, . . . , bt−1), which only depends
on b, will be the same for all N computations zi = bei with base b. This implies
that the precomputation of the ProductExp algorithm only needs to be conducted
once for solving a full FixedBaseExp problem of size N .

To describe and analyze the algorithm resulting from this idea, let’s assume
that the selected ProductExp algorithm memoizes the precomputation tables
from previous calls, for example by storing them in a dictionary. Therefore,
whenever the same vector b is used more than once, the precomputation table
is already available. Clearly, the performance of the resulting Alg.3 depends
strongly on this assumption, because then the precomputation table can be
amortized over the N modexps. In the same way, the values b = (b0, . . . , bt−1)
precomputed in Alg.3 must stored for later use.

Let Alg.3.1 and Alg.3.2 denote the algorithms obtained from combining Alg.3
with HAC14.88 and Alg.2, respectively. While Alg.3.1 is strictly inferior to Alg.3.2,
it is the combination we found in some libraries (see Section 3.1). Note that we
are not aware of any description of Alg.3.2 in this form in a published document,
nor of any existing implementation. The relative running times of the algorithms,
which depend on both ` and N , are as follows (using E(x) = 2x − x− 1):

M̃k
Alg.3.1(`,N) =

E(t) + (t− 1)k

N
+ (k − 1)(1 + Pt) <

2t + `

N
+ 2k,

M̃k,m
Alg.3.2(`,N) =

sE(m) + (t− 1)k

N
+ (k − 1) + (ks− 1)Pm <

s·2m + `

N
+ ks+ k.

Both versions of the algorithm have the same main parameter 1 ≤ k ≤ `. As soon
as k is fixed in Alg.3.2 and N is sufficiently large, we can select 1 ≤ mopt ≤ t
deterministically from Table 2. The selection of kopt for a given pair (`,N) is
therefore the main optimization problem to solve in both algorithms. We have

Algorithm: FixedBaseExpk,m(b, e, p)

Input: Base b
Exponents e = (e1, . . . , eN), ei = (ei,t−1 · · · , ei,1ei,0)B
Modulus p
Block size 1 ≤ k ≤ `, B = 2k

Sub-task size 1 ≤ m ≤ t
for i = 0, . . . , t− 1 do

bi ← b
if i < t− 1 then

for j = 1, . . . , k do
b← b2 mod p

b = (b0, . . . , bt−1)
for i = 1, . . . , N do

zi ← ProductExpm(b, (ei,0, . . . , ei,t−1), p) // using HAC14.88, Alg.1, or Alg.2

z ← (z1, . . . , zN)
return z

Algorithm 3: Fixed-base exponentiation algorithm based on HAC14.88, Alg.1,
or Alg.2. In case of HAC14.88, the parameter m is irrelevant.

computed optimal parameters for ` = 2047 and problem sizes 1 ≤ N ≤ 107.
Figure 1 shows the resulting impact factors µAlg(2047, N) and µ∗Alg(2047, 224, N).

The aforementioned comb method by Lim and Lee also has two parameters
1 ≤ b ≤ a ≤ `. Here, we refer to its description in [10] as HAC14.117. For
h = d`/ae, v = da/be, its running time

M̃a,b
HAC14.117(`,N) =

vE(h) + (h− 1)a+ (v − 1)b

N
+ (b− 1) + (bv − 1)Ph

is exactly the running time of M̃k,m
Alg.3.2(`,N) for a = ks and b = k (and therefore

h = m and v = s). This implies that Alg.3.2 and HAC14.117 are essentially the
same algorithms. Note that by setting a = b = k (or v = s = 1), they contain
the strictly inferior Alg.3.1 as a special case.

2.5 Use Case: Cryptographic Shuffle

A particular use case for applying the algorithms presented in this paper is the
shuffling of a list E = 〈e1, . . . , en〉 of ElGamal encrypted votes ei = (gri ,mipk

ri)
in a verifiable re-encryption mix-net. This is one of the most time-consuming
components in many voting protocols. Note that n is of the same order of mag-
nitude as the size of the electorate, i.e., possibly several millions in a large elec-
tion context. Two instances of FixedBaseExp are needed for re-encrypting the
encrypted votes in a single mixing step.

The particular shuffle proof system by Wikström and Terelius [13,14] requires
a total number of 8n+ 5 modexps for generating the proof and 9n+ 11 modexps
for verifying the proof. In Table 3, we derived from [5] a more detailed overview
of the necessary number of modexps of this particular approach. Note that some

Alg.1
Alg.2

Alg.3.1
Alg.3.2
Alg.1
Alg.2

Alg.3.1
Alg.3.2

µAlg(2047, N)
<latexit sha1_base64="AJ8yxCHyyGrcH0RBNhO+IG/uNFo=">AAACZXicbZDNShxBEMd7J19mo3GNwUsCGVwFFZGZRdCjIZecxEBWhZ1lqemp3m3s7hm6awzLMJc8Ta76Nj6Br5He2Q34kYKCH/+qoqr+aaGkoyi6awUvXr56/Wbpbfvd8sr71c7ah3OXl5Zjn+cqt5cpOFTSYJ8kKbwsLIJOFV6kV99m9YtrtE7m5idNCxxqGBspJAfy0qjzeSvR5ahKNNDEieqrGtf1Ti86PNo/3d0adbrRQdRE+BziBXTZIs5Ga604yXJeajTEFTg3iKOC9p0QoKWaDiuwJLnCup2UDgvgVzDGgUcDGt2wav6pw22vZKHIrU9DYaM+nKhAOzfVqe9s7n5am4n/qw1KEsfDSpqiJDR8vkiUKqQ8nJkTZtIiJzX1ANxKf2vIJ2CBk7ewvf1wzQTVNVL9WHSiWe1FiwZ/8VxrMNlelcz/z1BAqaiuEif+cdubHD+19Dmc9w5izz963ZPDhd1L7BPbZDssZkfshH1nZ6zPOPvN/rAbdtu6D1aCj8HGvDVoLWbW2aMIvvwFCv65pA==</latexit><latexit sha1_base64="AJ8yxCHyyGrcH0RBNhO+IG/uNFo=">AAACZXicbZDNShxBEMd7J19mo3GNwUsCGVwFFZGZRdCjIZecxEBWhZ1lqemp3m3s7hm6awzLMJc8Ta76Nj6Br5He2Q34kYKCH/+qoqr+aaGkoyi6awUvXr56/Wbpbfvd8sr71c7ah3OXl5Zjn+cqt5cpOFTSYJ8kKbwsLIJOFV6kV99m9YtrtE7m5idNCxxqGBspJAfy0qjzeSvR5ahKNNDEieqrGtf1Ti86PNo/3d0adbrRQdRE+BziBXTZIs5Ga604yXJeajTEFTg3iKOC9p0QoKWaDiuwJLnCup2UDgvgVzDGgUcDGt2wav6pw22vZKHIrU9DYaM+nKhAOzfVqe9s7n5am4n/qw1KEsfDSpqiJDR8vkiUKqQ8nJkTZtIiJzX1ANxKf2vIJ2CBk7ewvf1wzQTVNVL9WHSiWe1FiwZ/8VxrMNlelcz/z1BAqaiuEif+cdubHD+19Dmc9w5izz963ZPDhd1L7BPbZDssZkfshH1nZ6zPOPvN/rAbdtu6D1aCj8HGvDVoLWbW2aMIvvwFCv65pA==</latexit><latexit sha1_base64="AJ8yxCHyyGrcH0RBNhO+IG/uNFo=">AAACZXicbZDNShxBEMd7J19mo3GNwUsCGVwFFZGZRdCjIZecxEBWhZ1lqemp3m3s7hm6awzLMJc8Ta76Nj6Br5He2Q34kYKCH/+qoqr+aaGkoyi6awUvXr56/Wbpbfvd8sr71c7ah3OXl5Zjn+cqt5cpOFTSYJ8kKbwsLIJOFV6kV99m9YtrtE7m5idNCxxqGBspJAfy0qjzeSvR5ahKNNDEieqrGtf1Ti86PNo/3d0adbrRQdRE+BziBXTZIs5Ga604yXJeajTEFTg3iKOC9p0QoKWaDiuwJLnCup2UDgvgVzDGgUcDGt2wav6pw22vZKHIrU9DYaM+nKhAOzfVqe9s7n5am4n/qw1KEsfDSpqiJDR8vkiUKqQ8nJkTZtIiJzX1ANxKf2vIJ2CBk7ewvf1wzQTVNVL9WHSiWe1FiwZ/8VxrMNlelcz/z1BAqaiuEif+cdubHD+19Dmc9w5izz963ZPDhd1L7BPbZDssZkfshH1nZ6zPOPvN/rAbdtu6D1aCj8HGvDVoLWbW2aMIvvwFCv65pA==</latexit><latexit sha1_base64="AJ8yxCHyyGrcH0RBNhO+IG/uNFo=">AAACZXicbZDNShxBEMd7J19mo3GNwUsCGVwFFZGZRdCjIZecxEBWhZ1lqemp3m3s7hm6awzLMJc8Ta76Nj6Br5He2Q34kYKCH/+qoqr+aaGkoyi6awUvXr56/Wbpbfvd8sr71c7ah3OXl5Zjn+cqt5cpOFTSYJ8kKbwsLIJOFV6kV99m9YtrtE7m5idNCxxqGBspJAfy0qjzeSvR5ahKNNDEieqrGtf1Ti86PNo/3d0adbrRQdRE+BziBXTZIs5Ga604yXJeajTEFTg3iKOC9p0QoKWaDiuwJLnCup2UDgvgVzDGgUcDGt2wav6pw22vZKHIrU9DYaM+nKhAOzfVqe9s7n5am4n/qw1KEsfDSpqiJDR8vkiUKqQ8nJkTZtIiJzX1ANxKf2vIJ2CBk7ewvf1wzQTVNVL9WHSiWe1FiwZ/8VxrMNlelcz/z1BAqaiuEif+cdubHD+19Dmc9w5izz963ZPDhd1L7BPbZDssZkfshH1nZ6zPOPvN/rAbdtu6D1aCj8HGvDVoLWbW2aMIvvwFCv65pA==</latexit>

µ⇤
Alg(2047, 224, N)

<latexit sha1_base64="iXpjXSzkW0/jELEAhGBc6HRBNGo=">AAACEXicbZDLSgMxFIbP1Futt1GXLgwWoUopM6VQlxU3rqSCvUBbSybNtKHJzJBkhDJ06wv4Gm4V3Ilbn0DfwXcwvSy0+kPg4z/nkHN+L+JMacf5sFJLyyura+n1zMbm1vaOvbtXV2EsCa2RkIey6WFFOQtoTTPNaTOSFAuP04Y3vJjUG3dUKhYGN3oU0Y7A/YD5jGBtrK6N2iK+Pe0mbYH1QPnJOe+Px7miUyrni8VS/uqka2edgjMV+gvuHLKVQ/urAgDVrv3Z7oUkFjTQhGOlWq4T6bzyfSwYH3USLDUjnI4z7VjRCJMh7tOWwQALqjrJ9KQxOjZOD/mhNC/QaOr+nEiwUGokPNM53XyxNjH/q7Vi7Z91EhZEsaYBmX3kxxzpEE3yQT0mKdF8ZAATycyuiAywxESbFE0Y7uLpf6FeLLiGr00qJZgpDQdwBDlwoQwVuIQq1IDAPTzCEzxbD9aL9Wq9zVpT1nxmH37Jev8G4zqdhg==</latexit><latexit sha1_base64="yU9YAxALRNZWaMYhIKWndW4Z8hU=">AAACEXicbZDLSgMxFIYzXmu9jbp0YbAIVUqZKYW6ESpuXEkFe4F2LJk004YmM0OSEcowS925cusjuFVwJ259An0H38H0stDWHwIf/zmHnPO7IaNSWdanMTe/sLi0nFpJr66tb2yaW9s1GUQCkyoOWCAaLpKEUZ9UFVWMNEJBEHcZqbv9s2G9fkOEpIF/pQYhcTjq+tSjGClttU3Y4tH1UTtucaR60otPWTdJsgWrWMoVCsXcxWHbzFh5ayQ4C/YEMuU98/vk9vG+0ja/Wp0AR5z4CjMkZdO2QpWTnoc4ZQMnRkJRzEiSbkWShAj3UZc0NfqIE+nEo5MSeKCdDvQCoZ+v4Mj9PREjLuWAu7pztPl0bWj+V2tGyjt2YuqHkSI+Hn/kRQyqAA7zgR0qCFZsoAFhQfWuEPeQQFjpFHUY9vTps1Ar5G3NlzqVIhgrBXbBPsgCG5RAGZyDCqgCDO7AE3gGL8aD8Wq8Ge/j1jljMrMD/sj4+AErI58x</latexit><latexit sha1_base64="yU9YAxALRNZWaMYhIKWndW4Z8hU=">AAACEXicbZDLSgMxFIYzXmu9jbp0YbAIVUqZKYW6ESpuXEkFe4F2LJk004YmM0OSEcowS925cusjuFVwJ259An0H38H0stDWHwIf/zmHnPO7IaNSWdanMTe/sLi0nFpJr66tb2yaW9s1GUQCkyoOWCAaLpKEUZ9UFVWMNEJBEHcZqbv9s2G9fkOEpIF/pQYhcTjq+tSjGClttU3Y4tH1UTtucaR60otPWTdJsgWrWMoVCsXcxWHbzFh5ayQ4C/YEMuU98/vk9vG+0ja/Wp0AR5z4CjMkZdO2QpWTnoc4ZQMnRkJRzEiSbkWShAj3UZc0NfqIE+nEo5MSeKCdDvQCoZ+v4Mj9PREjLuWAu7pztPl0bWj+V2tGyjt2YuqHkSI+Hn/kRQyqAA7zgR0qCFZsoAFhQfWuEPeQQFjpFHUY9vTps1Ar5G3NlzqVIhgrBXbBPsgCG5RAGZyDCqgCDO7AE3gGL8aD8Wq8Ge/j1jljMrMD/sj4+AErI58x</latexit><latexit sha1_base64="uXCHGvFT4dpOA3+4AF0CpjumDNI=">AAACEXicbZDLSgMxFIYzXmu9VV26CRahSikzpVCXFTeupIK9QFuHTJppQ5PMkGSEYejWF/A13Cq4E7c+gT6N6XQW2vpD4OM/55Bzfi9kVGnb/rJWVtfWNzZzW/ntnd29/cLBYVsFkcSkhQMWyK6HFGFUkJammpFuKAniHiMdb3I1q3ceiFQ0EHc6DsmAo5GgPsVIG8stwD6P7s/dpM+RHis/uWSj6bRUtWv1crVaK9+cuYWiXbFTwWVwMiiCTE238N0fBjjiRGjMkFI9xw51Wfk+4pTFgwRJTTEj03w/UiREeIJGpGdQIE7UIElPmsJT4wyhH0jzhIap+3siQVypmHumM918sTYz/6v1Iu1fDBIqwkgTgecf+RGDOoCzfOCQSoI1iw0gLKnZFeIxkghrk6IJw1k8fRna1Ypj+NYuNmpZLDlwDE5ACTigDhrgGjRBC2DwCJ7BC3i1nqw36936mLeuWNnMEfgj6/MHqjKb6g==</latexit>

1

10

100

1 10 100 1000 10000 100000 1000000 10000000

Fig. 1: Impact factors µAlg(2047, N) and µ∗
Alg(2047, 224, N) of different algorithms. The

plotted curves show that ProductExp algorithms (Alg.1 and Alg.2) converge quickly to
a constant speedup, whereas FixedBaseExp algorithms (Alg.3.1 and Alg.3.2) increase
their speedup with increasing problem sizes. The curves also show that the benefit of
short exponent-techniques multiplies the benefit of the optimization algorithms.

of the involved exponents play the role of a challenge in the proof protocol, i.e.,
their lengths are restricted to the security strength λ. Therefore, we make a
distinction between exponents of length `long = |q| = |p| − 1 and `short = λ.

To evaluate the usage of Alg.2 and Alg.3.2 in a verifiable mix-net, we calcu-
lated relative running times (number of modular multiplications per encrypted
vote) and impact factors (benefit relative to HAC14.83) of the shuffle algorithms
for `long = 2047, `short = 112, and n ∈ {10, 100, . . . , 106}. Table 4 shows that
all shuffle algorithms benefit considerably from optimized modexp algorithms.
Shuffling itself is up to 20 times and generating the proof up to 13 times more
efficient. The smallest benefit results for the proof verification, which is between
3–4 times more efficient. These numbers can be improved even further by apply-
ing short-exponent techniques to the ElGamal encryptions.

Shuffle Generate Proof Verify Proof

`long `long `long `short

Exp – – n+ 7 n

ProductExp – 3n 3n 3n

FixedBaseExp

g n 4n+ 4 n+ 4 –

h – n – –

pk n 1 – –

Total 2n 8n+ 5 5n+ 11 4n

Table 3: Number of exponentiations for shuffling n votes in a verifiable mix-net.

n = 10 n = 100 n = 1000 n = 104 n = 105 n = 106

Shuffle 1216 3.95 626 7.66 450 10.66 352 13.63 286 16.78 240 19.99

Generate proof 2563 7.08 1884 9.06 1623 10.44 1463 11.58 1359 12.46 1283 13.20

Verify proof 5132 2.96 3486 3.68 3306 3.81 3276 3.84 3265 3.85 3262 3.85

Table 4: Relative running times (1st column) and impact factors (2nd column) of
different shuffle algorithms in a setting with `long = 2047 and `short = 112.

3 Experimental Results

To confirm the theoretical results from Section 2, we performed various tests on
different platforms. Generally, client-side performance is more critical as neither
the hardware nor the runtime environment can be influenced directly.

3.1 Technologies

On both the client and the server side, we focused on testing popular open-
source libraries that implement the algorithms analyzed in Section 2. On the
server side, the choice is limited as GMP can be regarded as a de facto standard
for multiple precision arithmetic. On the other hand, there are a number of
potential JavaScript libraries available to be used in browser applications.

Server. The GNU Multiple Precision Arithmetic Library (GMP) is a C library
that aims to be the fastest arbitrary-precision arithmetic library [4]. The most
critical inner loops are written in optimized assembly code, specialized for differ-
ent processors. There exist wrappers to many other programming language, such
as C++, Java, or Python, increasing the scope of GMP remarkably. Modular
exponentiation is implemented based on the sliding-window method (HAC14.85)
with Montgomery reduction. Unfortunately, GMP does not offer algorithms for
fixed-base or product exponentiations. However, the GMP Modular Exponenti-
ation Extension (MEE) by Douglas Wikström offers them both [16].

Client. Below we list the JavaScript libraries considered in our analysis. Their
particularities relative to modular exponentiation is summarized in Table 5.

– JSBN is a lightweight implementation of large number arithmetic mainly
developed by Tom Wu between 2009 and 2013 [18]. A few minor bugs have
been fixed in recent years, but otherwise the project seems to be inactive
today [12]. Modexp computations are based on the sliding-window technique
in combination with Barret and Montgomery reductions.

– Leemon is another lightweight implementation of large number arithmetic
developed by Leemon C. Baird between 2000 and 2013. Bug fixes to the code
available on GitHub have been made until 2016 [1]. Modexps are computed
with the square-and-multiply algorithm and Montgomery reduction.

– VJSC is a cryptographic library especially tailored for application in elec-
tronic voting protocols developed by Douglas Wikström [15,17]. The library

is available on GitHub since February 2018. Modexp computations are per-
formed by the improved window method. As a unique feature, VJSC offers
integrated support for product and fixed-base exponentiation.

– MiniGMP provides a subset of the features of the GMP library [11]. Since
it consists of pure C code, i.e., without any assembly optimization, it can
be compiled into the WebAssembly format and used for web applications.
Modexp computations are based on the square-and-multiply method.

Independently of the actual modexp performance, VJSC and MiniGMP are cur-
rently the best maintained libraries. Both of them are well tested and docu-
mented. The disadvantage of using MiniGMP in a web application is its depen-
dency to the WebAssembly technology, which has been introduced only recently.
In addition to the libraries listed above, there is also the bn.js JavaScript library
for big numbers [6]. Its main target are elliptic curves and hence it is optimized
for calculations with 256-bit numbers. For example, the window size within the
modular exponentiation algorithm is hard-coded to k = 4.

Library JSBN Leemon VJSC MiniGMP GMP/MEE

Language JavaScript JavaScript JavaScript C C

Author(s) T. Wu L. C. Baird D. Wikström N. Möller T. Granlund
D. Wikström

Exp HAC14.85∗ HAC14.79∗ HAC14.83 HAC14.79 HAC14.85∗

ProductExp unsupported unsupported HAC14.88 unsupported Alg.2

FixedBaseExp unsupported unsupported Alg.3.1 unsupported Alg.3.1

Table 5: JavaScript and C libraries for large integer arithmetic. Algorithm marked
with a star (∗) use Montgomery reduction.

Parallelism. A natural strategy to speed-up computations on a multi-core
CPU is to execute certain tasks in parallel. On the server side, defining and
executing tasks in parallel is well supported and easy to implement in many
programming languages. On the client side, the situation is slightly different. Al-
though current personal devices (notebooks, tablet computers, mobile phones)
have all multi-core CPUs and hence, parallelism is possible from a hardware
perspective, JavaScript code is intended to be executed in a single thread. Only
recent advancements in the area of so-called web workers bring concurrency also
to JavaScript by allowing web pages to run scripts in background threads. Once
created, a web worker runs completely independent of the main script without
any shared memory. Communication from and to the web workers goes via an
asynchronous event bus. Web workers are already supported by all major web
browsers, so performance benefits can be expected on all up-to-date platforms.

The remaining problem is to find a strategy that optimizes the overall benefit
of using parallel computing in combination with other optimization techniques.
For example, to circumvent the lack of shared memory, passing large precompu-
tation tables for fixed-base exponentiations to different web workers might not
be the best strategy. On the other hand, if multiple fixed-base exponentiations

for different bases must be computed, a web worker could be created for each
base. The overall computation time would then be decreased by several factors
depending on the number of available cores. As the benefit of parallelism strongly
relies on the underlying hardware and on the concrete computations to perform,
we have excluded this aspect in the following performance analysis.

3.2 Performance Analysis

We are now going to present the results from our experiments of computing
modular exponentiations with different optimizations, different libraries, and
different runtime environments. All experiments were conducted on the same
computer (MacBook Pro 2.9Ghz Intel Core i7) and the same web browser (Fire-
fox v63.0.3).6 The goal of this subsection is to present the magnitude of what
can be expected in practice and to demonstrate that this magnitude corresponds
to the theoretical results from Section 2. All results can be reproduced reliably
with deviations in a range of about ±5%.

Evaluation of Libraries. We first conducted an experiment to evaluate the
performance of the different libraries for large number arithmetic. We computed
with each library a series of 100 modular exponentiations. Table 6 shows the
resulting average running times for a single exponentiation. On the server side,
the results are somewhat surprising regarding the time difference between GMP
and MiniGMP. There are two main reasons for that. First, GMP implements
better algorithms than MiniGMP (see Table 5), and second, GMP provides
highly optimized assembly code. In our test environment, turning off assembly
optimizations makes GMP approximately three times less efficient.

Regarding the results obtained for JavaScript, we conclude that none of the
JavaScript libraries can keep up with native GMP. The comparison of the dif-
ferent JavaScript libraries also points out the impact of selecting the best al-
gorithm, which explains that VJSC and JSBN offer a better performance than
Leeman and MiniGMP/WASM.7 Interestingly, VJSC without Montgomery re-
duction performs better than JSBN with Montgomery reduction. This shows the
importance of other (hidden) factors such as an optimized implementation for
the given environment.

Product and Fixed-Base Exponentiation. To analyze the benefits of the
optimization techniques from Section 2, we decided to conduct server-side exper-
iments with GMP/MEE and client-side experiments with VJSC. It was required

6Using the same testbed, we performed further experiments on different platforms
such as tablet computers and mobile phones. We obtained very similar test results on
all platforms, but for reasons of brevity, we do not include them in our discussion.

7We were surprised to observe that MiniGMP compiled into WASM does not pro-
vide an important advantage over pure JavaScript. We have no explanation for this,
but from the tests that we conducted, we can exclude that this is due to some communi-
cation overhead between WASM and JavaScript. By passing exactly the same amount
of data from JavaScript to WASM, we observed that computing n modexps in a single
call is almost exactly n times more expensive than computing a single modexp.

Server Client

` GMP MiniGMP VJSC JSBN Leeman MiniGMP/WASM

2048 3.05ms 19.23ms 81.55ms 105.68ms 181.89ms 133.59ms

3072 8.97ms 63.14ms 248.69ms 332.81ms 589.74ms 447.27ms

Table 6: Average running times for modular exponentiations in different libraries.

to adjust VJSC slightly, as VJSC selects the parameter k of Alg.3.1 based on |p|
instead of ` = |ei|, which is sub-optimal for small exponents. The experiments
were conducted for problems of size N ∈ {102, 103, . . . , 106} and two different
security strengths λ = 112 and λ = 128. The absolute running times were mea-
sured over the whole experiment and then divided by the problem size N . We
also computed corresponding impact factors to demonstrate the benefit of the
optimization algorithms over plain modexp computations.

Using GMP/MEE (see Table 7), short exponents yield the expected perfor-
mance gain independently of the problem size N (between 7–8 for λ = 112 and
10–11 for λ = 128). Also independent of N is the benefit of Alg.2 for product ex-
ponentiations, which is between 5–6 times faster than computing plain modexps.
For Alg.3.1, the amortization of the precomputation can be observed by looking
at the increasing benefit whenN gets larger. The measurements also demonstrate
that the benefit of short exponents multiples the benefit of the optimization al-
gorithm. For λ = 128 and N = 106, for example, fixed-base exponentiations with
short exponents results in an impact factor of 99.2 ≈ 9.0 ∗ 10.8.

λ = 112 λ = 128

N Algorithm 2048/2047 2048/224 3072/3071 3072/256

100

HAC14.85 3.049 1 0.435 7.0 8.969 1 0.902 9.9

Alg.2 0.637 4.8 0.113 27.0 1.708 5.25 0.196 45.8

Alg.3.1 0.799 3.8 0.104 29.3 1.999 4.5 0.213 42.0

1,000

HAC14.85 2.980 1 0.360 8.0 8.852 1 0.797 11.1

Alg.2 0.610 4.9 0.108 27.6 1.508 5.8 0.207 42.8

Alg.3.1 0.588 5.1 0.079 37.7 1.556 5.7 0.170 52.1

10,000

HAC14.85 3.008 1 0.367 8.2 8.831 1 0.816 10.8

Alg.2 0.636 4.7 0.100 30.1 1.518 5.8 0.204 43.3

Alg.3.1 0.495 6.1 0.066 45.6 1.288 6.9 0.137 64.5

100,000 Alg.3.1 0.422 7.1 0.050 60.2 1.122 7.9 0.111 79.6

1,000,000 Alg.3.1 0.389 7.7 0.044 68.4 0.983 9.0 0.089 99.2

Table 7: Relative running times in milliseconds (1st columns) and impact factors (2nd
column) of different algorithms using GMP/MEE.

Using VJSC in a web browser (see Table 8), the resulting impact factors
are similar to GMP/MEE. However, some of the values are slightly misleading

because of the less optimized plain modexp implementation in VJSC. This ex-
plains that Alg.1 for product exponentiation in VJSC has only a slightly lower
impact factor in comparison with Alg.2 in GMP/MEE, although theory predicts
a difference of approximately 37%.

Overall, the conducted performance analysis shows that in practice the ob-
served benefits of the optimizations are slightly lower than what could be ex-
pected from theory. Possible reasons are manifold. In the theoretical analysis,
some simplifications have been made, like for example the counting of squarings
and multiplications in the same way. On the other hand, specific optimizations
on an implementation level are manifested to varying degrees depending on
the computation. The plain modexp in GMP is strongly optimized including
Montgomery reduction, straining the theoretical results based on counting mul-
tiplications. Nevertheless, the presented optimization techniques accelerate the
computation of multiple modexps also in practice by orders of magnitude.

λ = 112 λ = 128

N Algorithm 2048/2047 2048/224 3072/3071 3072/256

100

HAC14.83 81.55 1 11.73 7.0 248.69 1 25.10 9.9

Alg.1 18.69 4.4 3.22 25.3 58.44 4.3 7.52 33.1

Alg.3.1 15.16 5.4 2.89 28.2 47.41 5.2 6.14 40.5

1,000

HAC14.83 81.83 1 11.79 7.0 254.80 1 25.25 10.1

Alg.1 17.85 4.6 3.11 26.3 55.49 4.6 7.21 35.3

Alg.3.1 10.81 7.6 1.67 49.0 32.71 7.8 3.72 68.5

Table 8: Relative running times in milliseconds (1st columns) and impact factors (2nd
column) of different algorithms using VJSC.

4 Conclusion

Our analysis of modular exponentiation algorithms in this paper demonstrates
the potential of the available optimized methods for different types of exponenti-
ation problems. While product exponentiation problems can be solved 5–10 times
more efficiently, we can solve large fixed-based exponentiation problems up to
two orders of magnitude more efficiently than with conventional methods. Using
short-exponent techniques, the impact of these methods can be strengthened by
another order of magnitude. The resulting overall benefit is very promising for
making cryptographic protocols more efficient, particularly for web applications
on the client side. On the server side, we also obtain a considerable speedup,
for example for shuffling a list of encryptions in a verifiable mix-net. We expect
similar benefits for other cryptographic tasks.

Regarding the available libraries implementing the algorithms presented in
this paper, we believe that there is some room for future work. For the best
available algorithms for fixed-base exponentiation, Alg.3.2 or HAC14.117, we
were surprised not to find an implementation in any of the libraries we looked
at. By looking at the source code of these libraries, we also realized that they

do not always select optimal algorithm parameters. Improving and completing
these libraries is an open task, for which this paper provides a solid starting
point.

References

1. Baird, L. C.: Big Integer Library by Leemon, https://github.com/Evgenus/

BigInt

2. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT’92, 11th Workshop
on the Theory and Application of Cryptographic Techniques. pp. 200–207. LNCS
658, Balatonfüred, Hungary (1992)

3. Giry, D.: Cryptographic Key Length Recommendation, https://www.keylength.
com

4. Granlund, T.: The GNU Multiple Precision Arithmetic Library – Edition 6.1.2,
https://gmplib.org, (2016)

5. Haenni, R., Locher, P., Koenig, R.E., Dubuis, E.: Pseudo-code algorithms for ver-
ifiable re-encryption mix-nets. FC’17, 21st International Conference on Financial
Cryptography. pp. 370–384. LNCS 10323, Silema, Malta (2017)

6. Indutny, F.: BigNum in Pure Javascript, https://github.com/indutny/bn.js
7. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,

Deng, R., Zhou, J. (eds.) PKC’04, 7th International Workshop on Theory and
Practice in Public Key Cryptography. pp. 173–186. LNCS 2947, Singapore (2004)

8. Lee, P.J., Lim, C.H.: Method for exponentiation in a public-key cryptosystem.
United States Patent No. 5999627 (December 1999)

9. Lim, C.H., Lee, J.P.: More flexible exponentiation with precomputation. In:
Desmedt, Y. (ed.) CRYPTO’94, 14th Annual International Cryptology Conference
on Advances in Cryptology. pp. 95–107. LNCS 839, Santa Barbara, USA (1994)

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, USA (1996)

11. Möller, N.: Mini-GMP – A Minimalistic Implementation of a GNU GMP Subset,
https://godoc.org/modernc.org/minigmp

12. Perlitch, A.: JSBN – Javascript Big Number, https://github.com/andyperlitch/
jsbn

13. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT’10, 3rd International Conference on Cryptology in
Africa. pp. 100–113. LNCS 6055, Stellenbosch, South Africa (2010)

14. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP’09, 14th Australasian Conference on Information Security
and Privacy. pp. 407–421. LNCS 5594, Brisbane, Australia (2009)

15. Wikström, D.: User Manual for the Verificatum Mix-Net – VMN Version 3.0.3.
Verificatum AB, Stockholm, Sweden (2018)

16. Wikström, D.: GMP Modular Exponentiation Extension, https://github.com/

verificatum/verificatum-gmpmee

17. Wikström, D.: Verificatum JavaScript Cryptography Library, https://github.

com/verificatum/verificatum-vjsc

18. Wu, T.: RSA and ECC in JavaScript, http://www-cs-students.stanford.edu/

~tjw/jsbn

https://github.com/Evgenus/BigInt
https://github.com/Evgenus/BigInt
https://www.keylength.com
https://www.keylength.com
https://gmplib.org
https://github.com/indutny/bn.js
https://godoc.org/modernc.org/minigmp
https://github.com/andyperlitch/jsbn
https://github.com/andyperlitch/jsbn
https://github.com/verificatum/verificatum-gmpmee
https://github.com/verificatum/verificatum-gmpmee
https://github.com/verificatum/verificatum-vjsc
https://github.com/verificatum/verificatum-vjsc
http://www-cs-students.stanford.edu/~tjw/jsbn
http://www-cs-students.stanford.edu/~tjw/jsbn

