
Towards Automated Configuration of Stream
Clustering Algorithms

Matthias Carnein1, Heike Trautmann1, Albert Bifet2, and Bernhard Pfahringer2

1 University of Münster, Münster, Germany
{carnein,trautmann}@wi.uni-muenster.de

2 University of Waikato, Hamilton, New Zealand
{abifet,bernhard}@waikato.ac.nz

Abstract Clustering is an important technique in data analysis which
can reveal hidden patterns and unknown relationships in the data. A
common problem in clustering is the proper choice of parameter settings.
To tackle this, automated algorithm configuration is available which can
automatically find the best parameter settings. In practice, however, many
of our today’s data sources are data streams due to the widespread deploy-
ment of sensors, the internet-of-things or (social) media. Stream clustering
aims to tackle this challenge by identifying, tracking and updating clusters
over time. Unfortunately, none of the existing approaches for automated
algorithm configuration are directly applicable to the streaming scenario.
In this paper, we explore the possibility of automated algorithm config-
uration for stream clustering algorithms using an ensemble of different
configurations. In first experiments, we demonstrate that our approach is
able to automatically find superior configurations and refine them over
time.

Keywords: Stream Clustering · Automated Algorithm Configuration ·
Algorithm Selection · Ensemble Techniques.

Introduction One of the hardest challenges for data scientists is to find a suitable
algorithm as well as appropriate parameter settings to solve a given problem.
This is even more challenging when working with data streams which do not
allow re-evaluations and a posteriori optimisation. In addition, data streams can
change over time and parameters need to be adapted accordingly. These problems
considerably prevent the widespread adoption of stream mining algorithms in
the real-world. A popular tool in stream mining are stream clustering algorithms
which aim to identify and track clusters, i.e. groups of similar objects in a
stream [5]. In this paper we propose an innovative, ensemble-based approach
that allows to automatically find and adapt optimal parameters for data stream
clustering algorithms. In each iteration, promising configurations are used to
sample new ones that can replace inferior configurations. In first experiments, we
demonstrate that our approach can considerably improve clustering results. To
the best of our knowledge, this is the first attempt to apply automated algorithm
configuration to data streams as well as stream clustering.



2 M. Carnein et al.

Automated Algorithm Configuration Automated algorithm configuration
aims at automatically determining the best parameter settings for a given scen-
ario [8,9]. Popular approaches for this are SMAC [7] or irace [10]. Unfortunately,
none of these approaches is directly applicable to the streaming scenario. These
algorithms are mostly set-based and do not focus on single instances. In addition,
they require multiple evaluations of the data and usually require static and
stationary data without concept drift. This would require to apply the parameter
configuration a posteriori [4] or on an initial sample of the stream which is both
undesirable.

In this paper, we transfer the idea of automated algorithm configuration to
stream clustering. Similar challenges and prior work can be found in the algorithm
selection and stream classification literature. In [12], for example, the authors
create an ensemble of different stream classification algorithms. All algorithms
are trained simultaneously on the same data stream. The stream is divided into
windows of specified size and for every window, meta-features such as standard
deviation or entropy are computed. Based on these features and the performance
of the classifiers, a meta-classifier is trained to predict which classifier is most
suited to classify the next window. In [11,13], the BLAST algorithm is introduced
which uses the same ensemble strategy and inspired this work conceptually.
However, instead of using a meta-classifier it always selects the classifier which
performed best on the last window to predict the next window.

Automated Configuration of Stream Clustering Algorithms In this sec-
tion we propose confStream, an ensemble-based approach for automated al-
gorithm configuration in stream clustering, focusing on the online phase of the
algorithm, i.e. optimising the micro-cluster representation. In particular, our aim
is to maintain, adapt and improve an ensemble of different configurations over
time. For this, our algorithm requires a given starting configuration as well as
predefined parameter ranges. The main idea of confStream is summarised in Fig-
ure 1. In order to apply the ensemble strategy, we process the stream in windows
of fixed size h. Observations within a window are processed one by one and used to
train all algorithms in the ensemble simultaneously. At the end of the window, the
clustering performance of every configuration is evaluated (Step 1). For example,
the Silhouette Width measures for an observation i, the average similarity to
observations in its own cluster a(i) and compares it to the average similarity to its
closest clusters b(i). It is defined as: s(i) = (b(i)− a(i))/(max{a(i), b(i)}). While
the Silhouette Width is state-of-the-art, there are also other evaluation measures
which are equally applicable here. In order to evaluate our ensemble, we compute
the average Silhouette Width for all observations of the last window for the
different configurations. The clustering algorithm that performed best becomes
the active clusterer or incumbent for the next iteration. The incumbent represents
the current clustering result of the ensemble and will be used throughout the
next window.

In a next step, the configurations of the algorithms and their performances
are used to train a regression model (Step 2). The regression model is supposed
to learn how well certain configurations perform. This is later used in order to



Towards Automated Configuration of Stream Clustering Algorithms 3

e N (·, ·)

0.01
0.05
0.02

e N (·, ·) silh

0.01 0.8
0.05 0.5
0.02 0.9 e N (·, ·) silh

0.02 0.9
e N (·, ·)

0.018

e N (·, ·) ˆsilh

0.018 0.95

1) evaluate 3) sample
parent

4) create
offspring5) predict

6)
re
pl
ac
e

2)
tra

in

Figure 1. The performance of algorithms in the ensemble is evaluated and used to
train a regression model. Afterwards, one algorithm is sampled to create an offspring.
If its predicted performance is high enough, it replaces one of the algorithms in the
ensemble.

determine whether a new configuration is promising and should be incorporated
into the ensemble. In our case, we use an Adaptive Random Forest (ARF)
regression as proposed in [6]. The ARF is a natural choice, since it is a streaming
algorithm which can be trained over time. In order to generate new configurations,
one configuration is sampled from the ensemble as a parent (Step 3). The sampling
is performed proportionally to the performance of the algorithms such that better
performing configurations are more likely to be selected.

The selected configuration is then used as a parent in order to derive a new
configuration from it (Step 4). For this, we use a similar strategy as irace [10]. In
particular, every parameter i of every configuration has an associated truncated
normal distribution N (µi, σi) with expectation µi and standard deviation σi.
In order to sample a new parameter value, we place the expectation of the
distribution at the position of the parent. The distribution has an upper bound U
and a lower bound L which are set to the boundaries of the parameter range. The
standard deviation σi is initialised with (U −L)/2 for every parameter and slowly
reduced over time. For this, we use a fading strategy which exponentially decreases
the standard deviation over time: σt+1 = σt ·2−λ. The underlying idea is that the
configuration will converge to the optimum over time and the smaller standard
deviation allows to explore this area better. To account for concept drift, we
occasionally explore the full parameter range by resetting the standard deviation
to its initial value with a probability p. While we only consider continuous
parameters here, the approach could be extended to categorical parameters, e.g.
by drawing a new value from a list of probabilities where the probability of the
winning category is increased [10].

Next, the performance of the new configuration is predicted based on the
regression model (Step 5). If the size of the ensemble is smaller than esize the
new configuration is added directly to the ensemble. If the ensemble is full but
the predicted performance is better than a performance in the ensemble, the
new configuration can be incorporated into the ensemble (Step 6). For this,
we use proportional sampling again, where bad solutions are more likely to be
replaced. This is supposed to maintain a higher diversity in the ensemble than
removing the worst solutions first. As two special cases, we never remove the



4 M. Carnein et al.

confStream DenStream

0

0.5

1

Si
lh
ou

et
te

0

0.5

1

Si
lh
ou

et
te

0 500,000 1,000,000 1,500,000
0

0.2

0.4

Time

ε
va
lu
e

0

0.2

0.4

ε
va
lu
e

Figure 2. Development of Silhouette Width and ε parameter for the Random RBF stream

incumbent and always remove solutions first which did not yield a valid clustering
solution in the last window. We consider solutions invalid when the solution
contains only a single cluster or the algorithm failed. The generation of new
configurations can be repeated until a user-chosen number of configurations enew
has been generated. Afterwards, the next window of the stream is processed. In
summary, our approach has 5 main parameters itself: the window size h, the
fading parameter λ, the ensemble size esize, the number of new configurations
enew and the exploration probability p. We note that our ensemble approach
is slower than running individual algorithms. Nevertheless, in our experiments
the algorithm was fast enough to work in real-time since the algorithms can be
trained in parallel.

Evaluation In order to evaluate our approach we implemented a proof-of-concept
in Java3 as a clustering algorithm for the MOA framework [2]. For our analysis,
we consider a simple configuration scenario for the DenStream [3] algorithm,
one of the most popular stream clustering algorithms [5]. First, we evaluate the
performance of DenStream’s default configuration ε = 0.02, β = 0.2, µ = 1. We
then compare this with our ensemble approach, where we start with the same
configuration but optimise the distance threshold ε in its full value range [0, 1].
We set the ensemble size emax = 25, fading λ = 0.05, reset probability p = 0.001
and evaluate the solutions every h = 1000 data points. After each window, we
create enew = 10 new configurations. In order to evaluate the quality of the
clustering algorithms, we use the Silhouette Width. Since we want to evaluate
cluster quality over time, we evaluate the quality for windows of 1000 observations
in our experiments. We evaluate both algorithms, i.e. the default parametrisation
of DenStream vs. the configured version confStream, using a Random Radial
Basis Function (RBF) stream [1], sensor stream4, and covertype data set5. All
data sets are popular choices in the (stream) clustering literature.

Figure 2 shows the Silhouette Width for every window of the Random RBF
stream. The boxplot on the right summarises the range of values. It is obvious, that
3 Implementation available at: https://www.matthias-carnein.de/confStream
4 Dataset available at: http://db.csail.mit.edu/labdata/labdata.html
5 Dataset available at: http://archive.ics.uci.edu/ml/datasets/Covertype

https://www.matthias-carnein.de/confStream
http://db.csail.mit.edu/labdata/labdata.html
http://archive.ics.uci.edu/ml/datasets/Covertype


Towards Automated Configuration of Stream Clustering Algorithms 5

confStream DenStream

0 500,000 1,000,000 1,500,000 2,000,000
0

0.5

1

Time

Si
lh
ou

et
te

0

0.5

1

Si
lh
ou

et
te

Figure 3. Silhouette Width for the sensor stream

confStream DenStream

0

0.5

1

Si
lh
ou

et
te

0

0.5

1

Si
lh
ou

et
te

0 200,000 400,000
0

0.5

1

Time

ε
va
lu
e

0

0.5

1

ε
va
lu
e

Figure 4. Development of Silhouette Width and ε parameter for the covertype data
set

our ensemble approach quickly improves the default configuration and remains
superior for the vast majority of the stream. When observing the development
of the ε parameter in our ensemble, it becomes obvious how confStream first
explores a large range of values. Over time, the algorithm reduces the standard
deviation of the distributions in order to explore promising regions further before
settling on roughly ε = 0.005. Note that this is similar to the initial configuration
of ε = 0.02. Nevertheless, the performance is vastly improved which also highlights
how sensitive stream clustering algorithms are to different configurations.

For the other data sets, we observe similar trends. Figure 3 shows the results
for the sensor data stream. Again, confStream quickly improves upon the initial
configuration and yields better results with a near-perfect median silhouette
width of 0.98. While the default configuration also yields a good results, it is
stronger affected by concept drift in the data stream. In particular, the sensor
data set exhibits a periodic pattern of day and night. confStream is less affected
by this since it adapts to the changing scenarios. For the covertype data set the
difference is most obvious. Using the default configuration, DenStream is not able
to produce a single valid solution with at least two clusters throughout the entire
stream. While confStream starts with the same initial configuration, it quickly
adapts and is able to produce very high quality (Figure 4). This also shows in
the development of the parameter value which quickly changes from the initial
value ε = 0.02 and explores more suitable values between ε = 0.1 and ε = 0.2.

Overall, these initial results show that our ensemble strategy produces vastly
better clustering solutions than the default configuration. In particular, changes
and improvements are made over time which allow for adapting to stream
characteristics and / or unsuitable starting configurations.



6 M. Carnein et al.

Outlook and Conclusion In this paper we explored the possibility of auto-
mated algorithm configuration for stream clustering. By training an ensemble of
algorithms in parallel and deriving new configurations from promising solutions,
we are able to efficiently adapt the configuration over time. Results for a configur-
ation problem with one parameter have shown to improve the overall clustering
result considerably in comparison to its default configuration. In future work, we
will extend our approach and evaluation beyond a single algorithm and parameter.
In particular, we will optimise multiple parameters simultaneously, which can
be of different types, such as categorical or integer. Ultimately, we also aim to
include different kinds of stream clustering algorithms into the ensemble approach
resulting in per-instance algorithm selection and configuration on streaming data.

References

1. Bifet, A., Gavalda, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams with Practical Examples in MOA. MIT Press (2018)

2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis.
Journal of Machine Learning Research 11, 1601–1604 (8 2010)

3. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Conference on Data Mining (SIAM ’06). pp. 328–339
(2006)

4. Carnein, M., Assenmacher, D., Trautmann, H.: An empirical comparison of stream
clustering algorithms. In: Proceedings of the ACM International Conference on
Computing Frontiers (CF ’17). pp. 361 – 365. ACM (2017)

5. Carnein, M., Trautmann, H.: Optimizing data stream representation: An extensive
survey on stream clustering algorithms. Business & Information Systems Engineering
(BISE) (2019)

6. Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests
for data stream regression. In: 26th European Symposium on Artificial Neural
Networks, ESANN 2018 (2018)

7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Proceedings of LION-5. pp. 507–523 (2011)

8. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning:
Methods, Systems, Challenges. Springer (2018)

9. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: Survey and perspectives. Evolutionary Computation (ECJ) 27(1), 3–45
(2019), publication status: Published

10. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43 – 58 (2016)

11. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Having a blast: Meta-
learning and heterogeneous ensembles for data streams. In: 2015 IEEE International
Conference on Data Mining. pp. 1003–1008 (11 2015)

12. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm selection on
data streams. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) Discovery
Science. pp. 325–336. Springer International Publishing, Cham (2014)

13. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: The online performance
estimation framework: heterogeneous ensemble learning for data streams. Machine
Learning 107(1), 149–176 (1 2018)


	Towards Automated Configuration of Stream Clustering Algorithms

