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Abstract. In this paper we propose and study the novel problem of
explaining node embeddings by finding embedded human interpretable
subspaces in already trained unsupervised node representation embed-
dings. We use an external knowledge base that is organized as a tax-
onomy of human-understandable concepts over entities as a guide to
identify subspaces in node embeddings learned from an entity graph de-
rived from Wikipedia. We propose a method that given a concept finds
a linear transformation to a subspace where the structure of the concept
is retained. Our initial experiments show that we obtain low error in
finding fine-grained concepts.
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1 Introduction

Representations of nodes in a graph or node embeddings have proven useful in
many applications such as question answering [I], dialog systems [14], recom-
mender [21] systems and knowledge-base completion [I5]. The core idea behind
node representation learning (NRL) [22] @], [10] approaches is to distill the high-
dimensional discrete representation of nodes into a dense vector embedding us-
ing dimensionality reduction methods, which optionally not only incorporate the
graph structure, but also features attached to nodes. These representations can
be seen as features extracted from only the topology or from both the topology
and the available node attributes. The dense representations thereby learnt form
a latent feature space where the basis or dimensions are non-interpretable.
Consequently, in spite of their success, there is a lack of an understanding
of what the latent dimensions encode in terms of existing human knowledge.
This is problematic for downstream tasks requiring interpretability, since using
such embeddings results in the input already being non-interpretable. For aid-
ing interpretability and utility of these embeddings in downstream application
scenarios we initiate an inquiry into presence of interpretable or human under-
standable subspaces in the learnt feature representation space of these graph
embeddings. We ask the fundamental question: What do node embeddings en-
code in terms of human world knowledge? Recent works in interpretability for
learning on structured data either focus on generating interpretable embeddings
or explaining the predictions made by a classifier to which embeddings form the
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input [26]. But none of these methods provide insights into the embedding itself,
a problem which we propose and study in this work.

We take an alternate view on interpretability of node embeddings in that
we want to find sub-spaces in the embedding space corresponding to human-
understandable concepts. Our main contribution is in finding interpretable sub-
spaces in the latent feature representation space and thus characterizing the
behavior of node representations when projected into these interpretable spaces.
This has two distinct advantages — first we do not compromise on the effective-
ness of these embeddings as we post-hoc analyze the presence of interpretable
spaces in the already learned representation space. Secondly, we ground the in-
terpretable space to existing world knowledge in the form of knowledge bases.

To this extent, in this work, we use external knowledge bases (KB) to learn
conceptual spaces for corresponding characteristics that can be attributed to a
given node. In particular, we assume that we have an input graph of labelled or
named nodes. As a use case we focus on a hyperlink graph of named entities. We
observe that KBs like YAGO [7] encode human understandable concepts orga-
nized in a taxonomy which can be used as the source of world knowledge assum-
ing that the nodes/entities in the input graph are also present in the taxonomy.
In principle one can use any input graph and KB as long as the input graph node
names are grounded in the KB. Having extracted the possible concepts from the
taxonomy, we then propose methods to explain a node embedding in terms of
the applicability of various concepts. For example, a node named Albert Einstein
could be explained by concepts like Theoretical physicists, Scientists etc.

We propose two simple algorithms, SAS and CSD, to explain node embed-
dings in terms of concepts and provide promising first results for pre-trained
embeddings corresponding to two unsupervised random walk based node em-
bedding methods, namely, DeepWalk [22] and LINE [24]. We show that our
second approach CSD that projects a node embedding to a common learnt con-
cept space distinguishes the applicable and non applicable concepts better than
our first approach which operates in the original embedding space.

2 Related Work

Supervised learning approaches are either interpretable by design [3, 13| 25]
or explanations can be generated in a post-hoc manner after the model is
trained [23], [12] [19]. Post-hoc methods for interpretability either operate intro-
spectively (full access to the model parameters) [12] [19] or are model agnos-
tic [23]. We operate in the model introspective interpretable regime where we
assume full access to the model parameters. For other notions of interpretability
and a more comprehensive description of the approaches we point the readers
to [5].

Methods focussing on building interpretable representations include MEm-
bER [8] which learns entity embeddings using max-margin constraints to encode
the desideratum that (salient) properties of entities should have a simple geomet-
ric representation in the entity embedding. Jameel and Schockaert [9] propose
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a method which learns a vector-space embedding of entities from Wikipedia
and constrains this embedding such that entities of the same semantic type
are located in some lower-dimensional subspace. Minervini et al. [18] leverage
equivalence and inversion axioms during the learning of knowledge graph em-
beddings, by imposing a set of model dependent soft constraints on the predicate
embeddings. Post-hoc methods include GNN-Explainer [26] which provides in-
terpretations for GNN predictions on link prediction, node classification and
graph classification tasks. The interpretations are tied to specific tasks. We, on
the other hand, propose to understand the node representations directly in terms
of user provided conceptual categories.

Unlike the above works we focus on explaining the node vector representation
itself which might have been obtained using an arbitrary embedding method.

3 Preliminaries

In this section we give a brief overview of YAGO and node embedding methods
used in this work.

3.1 Knowledge Graphs

As a source of concepts or human understandable world knowledge we use the
YAGO [7] knowledge base (KB), which was automatically constructed from
Wikipedia. Typically, each article in Wikipedia becomes an entity in the knowl-
edge base (e.g., since Albert Einstein has an article in Wikipedia, Albert Einstein
is an entity in YAGO). Each entity is organized into a taxonomy of classes. In
addition, every entity is an instance of one or multiple classes and every class
(except the root class) is a subclass of one or multiple classes. therefore yielding
a hierarchy of classes the YAGO taxonomy.

Each class name is of the form <wordnet XXX_YYY> or <wikicat XXX_YYY> ,
where XXX is the name of the concept (e.g., singer), and YYY is the WordNet
3.0 synset id of the concept (e.g., 110599806). For example, the class of singers is
<wordnet_singer_110599806>. Additionally, each class is connected to its more
general class by the rdfs:subclassOf relationship.

Not all Wikipedia categories correspond to classes in YAGO. The lowest
layer of the taxonomy is the layer of instances. Instances comprise individual
entities such as rivers, people, or movies. For example, the lowest layer contains
<Elvis_Presley>. Each instance is connected to one or multiple classes of the
higher layers by the relationship rdf:type. For example, for entity Albert_Einstein
we have:

<Albert_Einstein> rdf:type <wikicat_Nuclear_physicist>.

One can therefore walk from the instance up to its class by rdf:type, and
then further up by rdfs:subclass0f. In Section 4| we will provide details about
how the concepts derived from the taxonomy are used as explanations for node
embeddings.
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3.2 Node Embeddings

Node representations or node embeddings can be understood as the set of fea-
tures extracted from the graph topology and (if given) node attributes. The
present set of techniques for node representation learning generally fall into one
of these categories : (1) random walk based [22| 4] 24} [T0], (2) matrix factoriza-
tion based [2l, 20] or (3) deep learning or Graph Neural Network (GNN) based
[11,[6]. In this section we describe briefly the two random walk based approaches
which we employ in this work. In future we will investigate our methods using
a general set of unsupervised and semi-supervised embedding approaches.

The basic idea behind random walk based embedding techniques is to trans-
form the graph into a collection of node sequences, in which, the occurrence fre-
quency of a node-context pair measures the structural distance between them.
Deep Walk [22] was the first method to exploit random walk techniques to build
sentence like structures from graphs to train a SkipGram model [17]. It employs
truncated random walks to create vertex sequences, which are later used in a
word2vec fashion to learn vertex embeddings given its context. For a graph G,
it samples uniformly a random vertex v as the root of the random walk W,. A
walk samples uniformly from the neighbors of the last vertex visited until the
maximum length ¢ is reached. For each v; € W, and for each ux, € W[j—c: j+¢]
(c is the window size), (vj, uy) forms a vertex-context training pair (similar to
word -context pair in word embeddings). The objective is then to maximize the
probability of observing uj, given the representation of v;. LINE [24] optimizes
first order proximity ( i.e. embeds nodes sharing a link closer) and second order
proximities (embeds nodes closer if they have similar neighborhoods) using an
SGNS (Skip-gram with negative sampling) objective function [I6]. Similar to
DeepWalk, it can be understood as sampling random walks of length 1 and uses
vertices sharing an edge as training pairs.

4 Research Questions and our Approach

We propose a general approach for post-hoc interpretability of node represen-
tation learned by an unsupervised or semi-supervised method. We bring in a
completely new perspective of interpretability of extracted features of nodes by
using external knowledge to determine the concepts that a given representation
encodes. More precisely, we use Wikipedia entity graph, G = (V, E), as the
input graph, where the nodes are Wikipedia pages and the edges correspond
to the hyperlinks between them. We employ DeepWalk and LINE to generate
embeddings for all v € V. We ignore the edge direction to learn the embed-
dings. We also recall that the present topic of this work is to define and validate
interpretability on node embeddings and the choice of embeddings methods is
therefore arbitrary. Let ®, represent the embedding vector corresponding to v.
We ponder over the following question:

RQ 1 What concepts do these embeddings encode?
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As the embeddings are usually generated only considering the structure of the
graph or/and node attributes, an embedding vector ®, encodes the concepts
which it shares with its neighborhood (neighborhood here depends on the em-
ployed embedding method). Consider, for example, an entity Barack Obama,
which could be understood as sharing characteristics with other Presidents and
Nobel Prize winners. Presidents and Nobel Prize winners here are the human un-
derstandable world knowledge or concepts. Rather than characterizing nodes in
terms of their neighbors, we in this work use these implicit human understand-
able concepts to characterize an embedding vector. In particular, for a given
embedding vector ®, and a concept ¢, we assign a score S(®,,c) € R which
quantifies the characteristic ¢ of the embedding ®,. Roughly speaking, the score
measures the amount of the characteristic that an embedding vector possesses.

The challenge here is that often only the graph structure or sometimes the
node attributes are also available but there are no explicit concepts provided.
We therefore ask the following question:

RQ 2 How can explicit concepts be constructed given an input graph with named
vertices?

In order to generate possible concepts related to an entity, we propose the
use of external knowledge base like YAGO (see also Section 7 which provides
a hierarchy of concepts related to any given node, say v in the graph. These
concepts form the characteristics of v. The user can then query the encoding of
possible concepts in the trained node embedding. For example, a user may ask
how much the embedding vector corresponding to Barack Obama encodes Amer-
ican Presidents and Scientists. One might assume that the Obama’s embedding
vector should not have anything to do with the concept Scientists, which might
not be true as the underlying graph might put Obama in close proximity with
other Nobel Prize winners who are also Scientists. Having defined or collected
concepts from external knowledge bases, the next natural question is:

RQ 3 For a given embedding vector, ®, and a concept ¢, how can we score the
applicability of ¢ to &, ?

To quantify the applicability of concept corresponding to an embedding or to
explain an embedding in terms of the applicable and not applicable concepts, we
propose two algorithms: Simple Aggregation Strategy (SAS) and Concept Space
Discovery (CSD).

4.1 Simple Aggregation Strategy

The first approach uses a simple aggregation strategy to build concept represen-
tations from the representations of the nodes (from the training set) to which
the concept is applicable (test nodes are held out). In particular, we first com-
pute a vector representing the given concept by taking the element-wise mean of
all the embedding vectors corresponding to nodes to which the concept applies,
excluding the query nodes. This vector defines the concept center. To score a
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query node, we compute the L2 distance between its embedding vector and the
concept center.
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Fig. 1: Extracting Concept Spaces

4.2 Concept Space Discovery (CSD)

The second algorithm is more involved and explicit, in the sense that for each
concept c¢ it learns a linear transformation, which is used to project the node
vectors into a more restricted space for ¢, that we call concept space. The original
embedding vectors are projected into this new space to extract their effective
representations which best encode the given concept (refer Figure . We learn
the parameters for this transformation on triplets of entities, using triplet loss.
Let a be the entity node (also called anchor node) which is a direct descendant of
concept ¢, p be some sibling of @ in the taxonomy and n be the negative example
, i.e., an entity which is not a sibling of a in the taxonomy. For any node v, let
®, represent the corresponding embedding vector. The triplet loss L(a,p,n) is
then defined as follows.

L(a,p,n) = maz{d(Pq, ®p) — d(Pq, ®p) +m,0} (1)

where d(®,, ®,) = ||z — y||2 and m is a margin specific to the negative entity in
a triplet. We set this margin to be the distance from the target concept to the
lowest common ancestor concept shared by the positive and the negative entity,
i.e. negative entities that are conceptually close to the positive entity have lower
margins and ones that are conceptually far away have higher margins. We refer to
negative entities with low margins as soft negatives and to negative entities with
high margins as hard negatives. An illustrative example for computing margin
is provided in Figure

Score Computation. The scoring of how much a concept applies to a query
entity is analogous to the first approach, but of course operates in the concept
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Fig.2: Margin for Triplet loss is determined by the similarity in the taxonomy
graph. The margin between Albert Einstein and Donald Knuth is 2, where as
the margin between Albert Einstein and Alfred Nobel is 1.

space. That is, for a given concept ¢ and the positive entities (the training set)
corresponding to the concept, we first compute their projections into common
concept space and then compute the mean of the resulting projected vectors
to represent the concept. Again for a given query node, we first compute its
projection into the concept space and the final score is then given by the L2
distance between the concept vector and the query projection. Lower the score,
better is the concept encoded by the query node. Note that both loss function
and scoring make use of the same distance metric, the L2 distance.

5 Experiments

5.1 Data Acquistion

We conduct our experiments on the Wikipedia entity graph, where the nodes are
Wikipedia pages and the edges correspond to the hyperlinks between them. In
addition, we use the type hierarchy of YAGO as the KB and consider all leaves
under a concept node as belonging to the concept, as described in Section [3.1

5.2 Methodology

Given a query entity ¢ and a start concept cgsiqrt we learn concept spaces for
Cstart and its sibling concepts in the taxonomy. Note that we limit the number of
concepts due to computation (Some concepts have a large number of siblings).
For each selected concept, we a learn a concept representation as described in
Section [ Below we give more details about the training employed in our second
approach CSD.

For CSD where we use triplet loss function to learn the concept space we
choose positive and negative examples as follows. For each concept ¢, the set of
positive entities (examples) consists of all entities contained in c¢. Next, we rank
all ancestor concepts of ¢ by the margin, which is the distance of the concept to
c. Following Figure 2 if ¢ is Theoretical Physicists, then entities which belong to
the concept Physicists are negative entities with a margin of 1, entities belonging
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to the concept Scientists are negative entities with a margin of 2, and so on. Note
that an entity is always assigned the lowest possible margin. In this example, all
physicists get assigned a margin of 1 and only all scientists that are not physicists
get assigned a margin of 2. We also exclude the query entity ¢ from the sampling
process. We split the sets of positive and negative entities into a training and a
validation set, taking 20% of the entities for the validation set.

In order to generate a triplet, we select a positive entity uniformly from the
set of positive samples. An anchor entity is selected in the same way, with respect
to the anchor not being the same entity as the chosen positive one. Next, we
select a margin m uniformly from the available margins in the set of negative
entities. Then, we select a negative entity uniformly from the negative samples
corresponding to margin m. To train one concept space, we sample a total of
ten thousand triplets. We then train the linear transformation using Stochastic
Gradient Descent with Momentum for 100 epochs, with a mini batch size of 16
and a leaning rate of 0.001. We stop the training early if the validation loss does
not improve over 5 epochs. After training, we score the query entity as described
in Section [ corresponding to our two approaches.

Fig. 3: Mean validation losses for train-

. . . 1.4- I DeepWalk
ing concept space projections for con- —
cepts of different hierarchy levels. Level 1.2
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archy, namely person, organization and _S 0.8
country. The second level includes sci- %
. . . o 5 0.6-
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tries in Europe. Level 3 then covers the = 0.4

more fine-grained concepts theoretical 0.2- .

physicist, university or college in Ger- 0.0 ‘ ‘ .
many and states of Germany. level 1 level 2 level 3
6 Results

In Figure [3] we show the errors corresponding to each concept level for different
node embedding approaches (DeepWalk and LINE). Concepts at a higher level,
as expected, exhibit higher error but the error reduces to a small value for more
specific concepts. It is interesting to observe that it is easier to find interpretable
concept spaces in DeepWalk as opposed to LINE. In this regard DeepWalk can
be in some sense regarded as more interpretable than LINE.

Figure [] and Figure [f] show the scores of different concepts for the query
entities Albert Einstein and Donald Trump, respectively. We recall that lower
the score S(®,,c), more is the applicability of ¢ towards the embedding vector
®, or the entity v. Concepts under which the query entity is listed in YAGO are
shown in green, concepts under which it is not listed in red.
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Fig.4: Concept Ranking for Albert Einstein

We note that for the query entity Albert Einstein, scoring concepts in both
of the original embedding spaces (Figure 4| a,b) yields a correct ranking of the
concepts. Yet, there is not much difference between the scores of concepts which
apply to the query entity and the scores of non-applicable concepts. This is more
prominent the case for the embeddings generated by LINE, where differences in
the scores are barely noticeable.

We observe a similar behaviour with our second query entity Donald Trump.
An interesting observation here is that the best ranked concept in Figure [5] b,
Leaders of organizations which is not listed as applicable concept in the taxon-
omy, in fact applies to the query entity Donald Trump. This is another finding,
in the sense that the embeddings encode knowledge not present in YAGO. Using
concept spaces to score the query entity increases the differences between scores.
This seems to work well for both query entities when using the embeddings gen-
erated by DeepWalk. The concept spaces deliver scores where it is much clearer
whether a concept applies to the query entity or not, as there is a large gap
between applicable ones and non-applicable ones.

7 Conclusions and Future Work

In this work we proposed a method to find interpretable concept spaces for graph
embeddings. We hypothesize that latent feature spaces that embed named ver-
tices are not interpretable themselves but contain subspaces that do contain
human understandable concepts. We propose an algorithm that tries to find
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Fig.5: Concept Ranking for Donald Trump

subspaces in the feature representation space by exploiting similarity of enti-
ties in the KB using triplet loss. We anecdotally show the effectiveness of our
approach on a small subset of concepts chosen from the KB.

As future work there are plenty of avenues to investigate in detail. First, we
would want to improve our evaluation procedure to quantitatively establish the
effectiveness of our concept space discovery approach. This would require us to
not only experiment with a large set of concepts but increase our coverage to
multiple unsupervised and semi-supervised node representation learning meth-
ods. Secondly, we would want to find out that if there are non-linear sub spaces
that encode coarse-granularity concepts like scientists, politicians etc. Currently,
we see room for improvement in finding subspaces for coarser granularity topics
due to choice of linear subspaces.
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