Skip to main content

Controlling Self-organization in Generative Creative Systems

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2020)

Abstract

We present a new tool which simulates the development of Artificial Chemistries (AChems) to produce real-time imagery for artistic/entertainment purposes. There have been many such usages of complex systems (CSs) for artistic purposes, but deciding which parameters to use for such unpredictable systems can lead to a feeling of lack of control. For our purposes, we struggled to gain enough control over the AChem real-time image generation tool to accompany music in a video-jockeying application. To overcome this difficulty, we developed a general-purpose clustering approach that attempts to produce sets of parameter configurations which lead to maximally distinct visualisations, thus ensuring users feel that they have influence over the AChem when controlled with a suitable GUI. We present this approach and its application to controlling the development of AChems, along with the results from experiments with different clustering approaches, aided by both machine vision analysis and human curation. We conclude by advocating an overfitting approach supplemented by a final check by a designer, and discuss potential applications of this in artistic and entertainment settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banzhaf, W.: Self-organization in a system of binary strings. In: Artificial Life IV (1994)

    Google Scholar 

  2. Beyls, P.: The musical universe of cellular automata. In: Proceedings of International Computer Music Conference (1989)

    Google Scholar 

  3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  4. Claudius, G.: Complex and Adaptive Dynamical Systems: A Primer. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71874-1

    Book  MATH  Google Scholar 

  5. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  6. Dittrich, P., Ziegler, J.C., Banzhaf, W.: Artificial chemistries-a review. Artif. Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  7. Dorin, A.: Meniscus. In: Taylor (ed.) Experimenta: House of Tomorrow Catalogue. Experimenta Media Arts, Australia (2003)

    Google Scholar 

  8. Dorin, A.: The virtual ecosystem as generative electronic art. In: Raidl, G., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 467–476. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24653-4_48

    Chapter  Google Scholar 

  9. Dorin, A.: Artificial life, death and epidemics in evolutionary, generative electronic art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 448–457. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32003-6_45

    Chapter  Google Scholar 

  10. Dorin, A.: Chance and complexity: stochastic and generative processes in art and creativity. In: Proceedings of the Virtual Reality International Conference: Laval Virtual (2013)

    Google Scholar 

  11. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.: RBN-world-the hunt for a rich AChem. In: ALife (2010)

    Google Scholar 

  12. Galanter, P.: What is generative art? Complexity theory as a context for art theory. In: GA2003-6th Generative Art Conference (2003)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  14. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artif. Life 8(4), 341–356 (2002)

    Article  Google Scholar 

  15. Jordanous, A.: A standardised procedure for evaluating creative systems: computational creativity evaluation based on what it is to be creative. Cogn. Comput. 4(3), 246–279 (2012). https://doi.org/10.1007/s12559-012-9156-1

    Article  Google Scholar 

  16. Kowaliw, T., McCormack, J., Dorin, A.: An interactive electronic art system based on artificial ecosystemics. In: 2011 IEEE Symposium on Artificial Life (ALIFE) (2011)

    Google Scholar 

  17. Langton, C.G., et al.: Artificial life (1989)

    Google Scholar 

  18. Madina, D., Ono, N., Ikegami, T.: Cellular evolution in a 3D lattice artificial chemistry. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 59–68. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_7

    Chapter  Google Scholar 

  19. McCormack, J.: Eden: an evolutionary sonic ecosystem. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 133–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_13

    Chapter  Google Scholar 

  20. McCormack, J., Dorin, A.: Art, emergence and the computational sublime. In: Proceedings of Second Iteration: A Conference on Generative Systems in the Electronic Arts. CEMA, Melbourne (2001)

    Google Scholar 

  21. Prokopenko, M.: Guided self-organization (2009)

    Google Scholar 

  22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  23. Suzudo, T.: Spatial pattern formation in asynchronous cellular automata with mass conservation. Phys. A 343, 185–200 (2004)

    Article  MathSciNet  Google Scholar 

  24. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms of life in an artificial environment. Artif. Life 9(2), 153–174 (2003)

    Article  Google Scholar 

  25. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  26. Varela, F.G., Maturana, H.R., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5(4), 187–196 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank three anonymous reviewers for helpful comments. Jonathan is funded by the EPSRC and AHRC Centre for Doctoral Training in Media and Arts Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Young or Simon Colton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Young, J., Colton, S. (2020). Controlling Self-organization in Generative Creative Systems. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2020. Lecture Notes in Computer Science(), vol 12103. Springer, Cham. https://doi.org/10.1007/978-3-030-43859-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43859-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43858-6

  • Online ISBN: 978-3-030-43859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics