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Abstract. In this work we present STEVE - Soccer TEam VEctors,
a principled approach for learning real valued vectors for soccer teams
where similar teams are close to each other in the resulting vector space.
STEVE only relies on freely available information about the matches
teams played in the past. These vectors can serve as input to various
machine learning tasks. Evaluating on the task of team market value
estimation, STEVE outperforms all its competitors. Moreover, we use
STEVE for similarity search and to rank soccer teams.
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1 Introduction

The field of soccer analytics suffers from poor availability of free and affordable
data. While Northern American sports have already been the subject of data
analytics for a long time, soccer analytics has only started to gain traction in
the recent years.
Feature vectors usually serve as an input to machine learning models. They pro-
vide a numeric description of an objects characteristics. However, in the case of
soccer analytics these features are hard to obtain. For example, collecting non-
trivial features for a soccer player or a team involves buying data from a sports
analysis company which employs experts to gather data.
In this work we propose STEVE - Soccer TEam VEctors, a method to auto-
matically learn feature vectors of soccer teams. STEVE is designed to only use
freely available match results from different soccer leagues and competitions.
Thus, we alleviate the problem of poor data availability in soccer analytics. Au-
tomatically extracted feature vectors are usually referred to as representations
in the literature. These representations can conveniently serve as input to var-
ious machine learning tasks like classification, clustering and regression. In the
resulting vector space, similar teams are close to each other. We base the notion
of similarity between soccer teams on four solid assumptions (Section 3). The
most important one is that two teams are similar if they often win against the
same opponents. Hence, STEVE can be used to find similar teams by comput-
ing the distance between representations and to rank a self chosen list of teams
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according to their strengths.

This paper is organized as follows: In Section 2 we review related work. It con-
sists of an in depth discussion of the process of learning real valued vectors
for elements in a set and its applications. We also briefly review a recent ap-
proach to team ranking. In Section 3 we introduce STEVE, our approach to
learn meaningful representations for soccer teams. After giving an overview of
the underlying idea, we introduce the problem with more rigor and conclude
the section by formulating an algorithm for the task. In Section 4 we conduct
various experiments to evaluate the approach. Finally, Section 5 closes out with
conclusions and outlines future work.

2 Related Work

Learning real valued vectors for elements in a set has been been of particular
interest in the field of natural language processing. Elements are usually words
or sentences and their representation is computed in such a way, that they entail
their meaning. Modern approaches typically learn a distributed representation
for words [3] based on the distributional hypothesis [22], which states that words
with similar meanings often occur in the same contexts.
Mikolov et al. [16,17] introduced word2vec, a neural language model which uses
the skip-gram architecture to train word representations. Given a center word
word2vec by iteratively maximizes the probability of observing the surrounding
window of context words. The resulting representations can be used to mea-
sure semantic similarity between words. According to word2vec the most similar
word to soccer is football. Moreover, vector arithmetic can be used to compute
analogies. Although having recently been put in question [12,2], a very famous
example is the following: king - man + woman = queen. The concept has since
then been extended to graph structured data to learn a representation for each
node in a graph. Perozzi et al. [21] and Dong et al. [7] treat random walks as the
equivalent of sentences. This is based on the assumption that these walks can
be interpreted as sampling from a language graph. The resulting sentences are
fed to word2vec. Building upon graph based representation learning approaches,
LinNet [20] builds a weighted directed match-up network where nodes represent
lineups from NBA basketball teams. An edge from node i to node j is inserted
if lineup i outperformed lineup j. The edge weight is set to the performance
margin of the corresponding match-up. Lineup representations are computed by
deploying node2vec [9] on the resulting network. Afterwards, a logistic regres-
sion model based on the previously computed lineup representations is learned
to model the probability of lineup λi outperforming lineup λi.
More recently, the aforementioned findings have also been applied to sports an-
alytics. (batter|pitcher)2vec [1] computes representations of Major League Base-
ball players through a supervised learning task that predicts the outcome of an
at-bat given the context of a specific batter and pitcher. The resulting represen-
tations are used to cluster pitchers who rely on pitches with dramatic movement
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and predict future at-bat outcomes. Further, by performing simple arithmetic in
the learned vector space they identify opposite-handed doppelgangers.
Le et. al [14] introduce a data-driven ghosting model based on tracking data
of a season from a professional soccer league to generate the defensive motion
patterns of a league average team. To fine-tune the league average model to ac-
count for a team’s structural and stylistic elements, each team is associated with
a team identity vector.
Our approach aims to learn representations for soccer teams and is thus closely
related to the presented approaches. As we use the representations to rank teams,
we briefly review related work on the topic.
Neumann et al. [18] propose an alternative to classical ELO and Pi rating based
team ranking approaches [11,6]. A graph based on the match results and a gen-
eralized version of agony [10] is used to uncover hierarchies. The approach is
used to categorize teams into a few discrete levels of playing quality. General
match-up modeling is addressed by the blade-chest model [5]. Each player is
represented by two d-dimensional vectors, the blade and chest vectors. Team a
won if its blade is closer to team b’s chest than vice versa. Intransitivity is ex-
plicitly modeled by using both blade and chest vectors, something that cannot
be accounted for by approaches that associate a single scalar value with each
team [4].

3 Soccer Team Vectors

In this section we present STEVE - Soccer Team Vectors. We first give an
overview of the underlying idea and the goal of this work. Afterwards we dis-
cuss the problem definition and introduce an algorithm to learn useful latent
representations for soccer teams.

3.1 Overview

STEVE aims to learn meaningful representations for soccer teams where repre-
sentations come in the form of low dimensional vectors. If two teams are simi-
lar, their representations should be close in vector space while dissimilar teams
should exhibit a large distance. Furthermore, these learned latent representations
can be used as feature vectors for various machine learning tasks like clustering,
classification and regression. Due to the fact that there is no clear definition of
similarity for soccer teams, we base our approach on the following four assump-
tions:

1. The similarity between two teams can be determined by accounting for the
matches they played in the past.

2. Frequent draws between two teams indicate that they are of approximately
equal strength. Hence, both teams are similar.

3. Two teams are similar if they often win against the same opponents.
4. More recent matches have a higher influence on the similarity than those a

long time ago.
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Since data acquisition is expensive and time-consuming, especially in the field of
sports analytics, STEVE is designed to learn from minimal information. More
precisely, we only use data about which teams played against each other, during
which season a match took place and whether the home team won, lost or the
match resulted in a draw. Note that the assumptions mentioned above do not
require any further information and are therefore well suited for this setting.

3.2 Problem Definition

To simplify definitions, let M = {1, 2, . . . ,m}, we assume that each of the m
soccer teams we want to learn a representation for is associated with an iden-
tification number i ∈ M . Further, let Φ ∈ Rm×δ, where each row Φi repre-
sents team i’s δ dimensional latent representation. The goal of this work is to
find Φ in such a way, that dist(Φi, Φj) is small for similar teams i and j and
dist(Φi, Φk) is large for dissimilar teams i and k. dist(·, ·) is some distance met-
ric and similarity between teams is determined according to the assumptions
made in Section 3.1. To solve this task, data is given in the following form:
D = {(a, b, s, d) ∈ M ×M × {1, . . . , xmax} × {0, 1}}. The quadruple (a, b, s, d)
represents a single match between teams a and b, s is an integer indicating dur-
ing which of the xmax seasons the match took place and d is a flag set to 1 if the
match resulted in a draw and 0 otherwise. If d = 0, the quadruple is arranged
such that team a won against team b.

3.3 Algorithm

According to the first assumption, we can loop over the dataset D while adjusting
Φ. If d = 1, we minimize the distance between Φa and Φb, thereby accounting for
the second assumption. The third assumption addresses a higher order relation-
ship, where teams that often win against the same teams should be similar. We
introduce a second matrix Ψ ∈ Rm×δ and call each row Ψi team i’s loser represen-
tation. Further, we call Φi the winner representation of team i. Both matrices Φ
and Ψ are initialized according to a normal distribution with zero mean and unit
variance. When team a wins against team b we minimize the distance between
Φa and Ψb, bringing b’s loser representation and a’s winner representation closer
together. That is, the loser representations of all teams a often wins against, will
be in close proximity to team a’s winner representation. Consequently, if other
teams also often win against these teams, their winner representations must be
close in order to minimize the distance to the loser representations. Parameters
Φ and Ψ are estimated using stochastic gradient descent where the objective we
aim to minimize is given as follows:

arg min
Φ,Ψ

∑
(a,b,s,d)∈D

d ∗ dist(Φa, Φb) + (1− d) ∗ dist(Φa, Ψb)

We minimize the distance between Φa and Φb directly when both teams draw
(d = 1). Otherwise (d = 0) we minimize the distance between Φa (winner rep-
resentation) and Ψb (loser representation). With the squared euclidean distance
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as the distance metric, the expression can be rewritten as illustrated below.

arg min
Φ,Ψ

∑
(a,b,s,d)∈D

d ∗ ‖Φa − Φb‖2 + (1− d) ∗ ‖Φa − Ψb‖2

In its current form, matches played in long past seasons contribute as much to
the loss as more recent matches. We alleviate this problem by down-weighting
matches from older seasons using the linear weighting scheme s

xxmax
, thereby

completing the formulation of the objective:

arg min
Φ,Ψ

∑
(a,b,s,d)∈D

s

xmax

[
d ∗ ‖Φa − Φb‖2 + (1− d) ∗ ‖Φa − Ψb‖2

]

This approach has the advantage of no complex statistics having to be gathered.
All our assumptions are captured in the teams’s representations. We describe
the algorithm in more detail in Algorithm 1. Note that here gradients are com-
puted after observing a single data point and the regularization term is omitted.
This is done for illustration purposes only. In our implementation, we train the
algorithm in a batch-wise fashion. For In lines 9, 12 and 15 the representations
are normalized as we have found this to speed up training. It also helps to keep
distances within a meaningful range.

Algorithm 1 STEVE(D, m, δ, α, xmax,e)

1: Φ ∼ N (0, 1)m×δ . Initialize Φ
2: Ψ ∼ N (0, 1)m×δ . Initialize Ψ
3: for i in {1, . . . , e} do
4: D = shuffle(D) . Shuffle dataset
5: for each (a, b, s, d) in D do

6: L(Φ, Ψ) = s
xxmax

[
d ∗ ‖Φa − Φb‖2 + (1− d) ∗ ‖Φa − Ψb‖2

]
. Compute loss

7: if d = 0 then . a won the match
8: Ψb = Ψb − α ∗ ∂L

∂Ψb
. Gradient descent on b’s loser representation

9: Ψb = Ψb/‖Ψb‖2 . Normalize b’s loser representation
10: else . Match is a draw
11: Φb = Φa − α ∗ ∂L

∂Φb
. Gradient descent on b’s winner representation

12: Φb = Φb/‖Φb‖2 . Normalize b’s winner representation
13: end if
14: Φa = Φa − α ∗ ∂L

∂Φa
. Gradient descent on a’s winner representation

15: Φa = Φa/‖Φa‖2 . Normalize a’s winner representation
16: end for
17: end for
18: return Φ, Ψ
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4 Experiments

In this section, we provide an overview of the dataset. We also conduct various
experiments to investigate the expressiveness and efficacy of our approach.

4.1 Dataset and Experimental Setup

The dataset consists of all the matches from the Bundesliga (Germany), Premier
League (Great Britain), Serie A (Italy), La Liga (Spain), Eredivisie (Nether-
lands), League 1 (France), Sper Lig (Turkey), Pro League (Belgium), Liga NOS
(Portugal), Europa League and the Champions League played from 2010 until
2019. A total of 29529 matches between 378 different teams was carried out
where approximately 25% ended in a draw. Unless stated otherwise, for all ex-
periments we set δ = 16 and batch size = 128. We use Adam [13] with a learning
rate α = 0.0001 for parameter estimation and train for e = 40 epochs. Addition-
ally, we add a small L2 weight penalty of 10−6.

4.2 Similarity Search

We select five European top teams and run STEVE on all the matches from
season 2010 until 2019 in the corresponding league. Since we are dealing with
small datasets, we set δ = 10 and batch size = 32. For each team, we note
the five most similar teams (smallest distance) in Table 1. Note that we use
the distance between the corresponding winner representations. As expected, we
clearly observe that top teams are similar to other top teams. For example, the
team most similar to Barcelona is Real Madrid. Both teams often compete for
supremacy in La Liga. In general, we observe that similarities in Table 1 roughly
reflect the average placement in the respective league.

Table 1. Five most similar teams for five European top teams.

Top soccer team per league chosen for similarity search

Bayern München Barcelona Paris SG Manchester U. Juve. Turin

Five most similar teams chosen by STEVE

RB Leipzig Real Madrid Lyon Liverpool SSC Napoli

Dortmund Valencia Marseille Manchester C. AS Roma

Mönchengladbach Atletico Madrid Monaco Chelsea AC Milan

Leverkusen Sevilla St Etienne Tottenham Inter. Milano

Hoffenheim Villarreal Lille Arsenal SS Lazio



Soccer Team Vectors 7

4.3 Ranking Soccer Teams

To retrieve a ranked list of soccer teams, one could simply use a league table.
However, the list will only reflect the team’s constitution accumulated over a
single season. The ranking will not take past successes into account. One might
alleviate this problem by averaging the league table over multiple seasons. Nev-
ertheless, another problem arises: the list will only consist of teams from a single
league. Combining league tables from different countries and competitions to
obtain a more diverse ranking is considerably less straightforward. It gets even
more complicated when we wish to rank a list of self chosen teams, possibly
from many different countries. STEVE provides a simple yet effective way to
generate rankings for the use case mentioned above. Given a list of teams, we
simulate a tournament where each team plays against all other teams. The list
is then sorted according to the number of victories. To compute the outcome of
a single match (victory or defeat) between team a and b, let α = ‖Φa−Ψb‖2 and
β = ‖Φb−Ψa‖2. If α < β, then team b’s loser representation is closer to team a’s
winner representation than team a’s loser representation is to team b’s winner
representation. Thus, team a is stronger than team b and we increase team a’s
victory counter. The same line of reasoning is applied to the case where α > β.
In Figure 1 we generated two rankings using the aforementioned approach.
Each list consists of twelve teams from different European countries of differ-
ent strengths. Our approach produces reasonable rankings: Highly successful
international top teams like Real Madrid, FC Bayern Munich, FC Barcelona,
and AS Roma are placed at the top of the list while mediocre teams like Es-
panyol Barcelona and Werder Bremen are placed further back in the list. The
least successful teams like FC Toulouse, Cardiff City, Fortuna Düsseldorf and
Parma Calcio occupy the tail of the list. STEVE can be seen as an alternative
to previous soccer team ranking methods [11,15] based on the ELO rating [8].

Fig. 1. Team rankings generated by STEVE. Each row1,2 depicts one ranked list from
the strongest (left) to the weakest team (right). Numbers represent a team’s relative
strength - the number hypothetical matches won.

1 Real Madrid, FC Bayern Munich, Inter Milano, Liverpool FC, Borussia Dortmund, Ajax
Amsterdam, FC Porto, Club Brugge KV, Werder Bremen, 1.FC Nuremberg, FC Toulouse, Cardiff

City
2 FC Barcelona, AS Roma, Atltico Madrid, Paris SG, Tottenham, PSV Eindhoven, Arsenal
London, SL Benfica, Espanyol Barcelona, VFB Stuttgart, Fortuna Dusseldorf, Parma Calcio



8 R. Müller et al.

4.4 Team Market Value Estimation

The goal of this work is to learn representations that are well suited for vari-
ous downstream machine learning tasks. We validate this property by evaluating
STEVE with respect to regression and classification performance. We argue that
a meaningful representation should carry enough information to reliably predict
a team’s market value. Therefore, both tasks involve predicting the value of a
team given its representation. We obtained current market values for all teams in
the dataset from season 2018/2019. A team’s market value is determined by the
sum of the market values of all its players. On average, a team is worth e183.7
million with a standard deviation of e241.2M. The least valuable team is BV De
Graafschap (e10.15M) and the most valuable team is FC Barcelona (e1180M).
The first, second and third quartiles are e25M, e93.7M and e232.5M, respec-
tively. For regression and classification, we use the following team representations
as an input to a multi layer perceptron (MLP) with two hidden layers. The first
hidden layer has a size of 50, the second one 20. Apart from changing hidden
layer sizes, we use default parameters provided by [19] for all further analyses.

– STEVE Representations are computed using STEVE with δ ∈ {8, 16, 32}.
A team’s winner and loser representation is concatenated to form its team
vector. The resulting feature vectors are of size 16, 32, 64.

– Season-stats We extract count based features for each team in the dataset
to mimic traditional feature extraction. For season 2018/2019 we collect the
following statistics: number of victories, draws, defeats as well as goals scored
and goals conceded. Each feature is computed for matches in the Champions
League, Euro League and the respective national league. Additionally, we use
goals per match, goals per national and international match. This results in
a 18 dimensional feature vector (representation) for each team.

– Season-stats (CAT-x) Season-stats for the last x seasons are concate-
nated. The resulting feature vectors are of size x ∗ 18.

– Season-stats (SUM-x) Season-stats for the last x seasons are summed
together. The resulting feature vectors are of size 18.

Comparability between the different representations mentioned above is ensured
due to the fact that none of them requires information absent in the dataset.
Season-Stats has many features that are intuitively well suited for team value
estimation. For example, a large proportion of teams that participate in inter-
national competitions are more valuable than those who don’t. Statistics about
goals and match results are helpful for assessing a team’s strength which is in
turn correlated to the team’s market value.

Regression Team value estimation naturally lends itself to be cast as a regres-
sion problem. During training we standardize team values (targets) and Season-
Stats features by subtracting the mean and dividing by the standard deviation.
Evaluation is carried out using 5-fold cross-validation and results are reported
in Table 2.
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Classification By grouping team values into bins, we frame the task as classifi-
cation problem. Teams are assigned classes according to the quartile their value
lies in. Consequently, each team is associated with one of four classes. We apply
the same standardization procedure as in the case of regression and use 5-fold
cross-validation. Results are reported in Table 3.

Table 2. Results for the regression task of team value estimation. To quantify the
quality of prediction, we use root mean squared error (RMSE), mean absolute error
(MAE) and the mean median absolute error (MMAE), all reported in million e.

RMSE MAE MMAE

STEVE-16 142.12 ± 75.22 88.37 ± 25.69 52.01 ± 13.42

STEVE-32 131.51 ± 40.15 83.20 ± 24.51 46.87 ± 21.89

STEVE-64 111.27 ± 48.58 67.14 ± 30.51 32.80 ± 10.42

Season-Stats 173.75 ± 119.35 110.32 ± 63.61 69.96 ± 15.43

Season-Stats (CAT-3) 200.77 ± 157.55 138.15 ± 87.06 86.98 ± 39.83

Season-Stats (CAT-5) 172.05 ± 70.83 119.81 ± 43.18 80.74 ± 18.96

Season-Stats (CAT-9) 151.09 ± 80.37 105.98 ± 41.96 68.82 ± 23.15

Season-Stats (SUM-3) 158.44 ± 108.50 105.65 ± 53.95 69.16 ± 11.39

Season-Stats (SUM-5) 154.71 ± 115.76 104.04 ± 59.34 69.81 ± 15.69

Season-Stats (SUM-9) 158.33 ± 120.90 106.67 ± 62.61 67.74 ± 17.75

Table 3. Results for the classification task of team value estimation, measured with
micro F1 score and macro F1 score.

Micro F1 Macro F1

STEVE-16 0.67 ± 0.10 0.64 ± 0.10

STEVE-32 0.74 ± 0.11 0.71 ± 0.14

STEVE-64 0.74 ± 0.10 0.72 ± 0.09

Season-Stats 0.52 ± 0.14 0.45 ± 0.19

Season-Stats (CAT-3) 0.50 ± 0.12 0.44 ± 0.15

Season-Stats (CAT-5) 0.55 ± 0.14 0.51 ± 0.16

Season-Stats (CAT-9) 0.60 ± 0.13 0.56 ± 0.11

Season-Stats (SUM-3) 0.49 ± 0.09 0.40 ± 0.10

Season-Stats (SUM-5) 0.48 ± 0.08 0.39 ± 0.07

Season-Stats (SUM-9) 0.47 ± 0.09 0.37 ± 0.15
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Results STEVE clearly outperforms the other representations both in terms of
regression and classification performance. While δ = 64 generally yields the best
results, even δ = 16 produces superior results compared to Season-Stats. In terms
of regression performance, we observe that Season-Stats is most competitive
when using information from multiple seasons (CAT-x and SUM-x). All forms of
representation manage to estimate the general tendency of a team’s market value
but STEVE’s predictions are far more precise. Similar conclusions can be drawn
when inspecting classification performance. The best competing representation
is Season-Stats (CAT-9) which is 162 dimensional, 92 dimensions more than
STEVE (δ = 64). Still, STEVE (δ = 64) provides ≈ 20% better performance
than Season-Stats (CAT-9). It can therefore be concluded that STEVE is able to
compress information needed for the task and succeeds to provide high efficacy
representations.

5 Conclusion

In this work we introduced STEVE, a simple yet effective way to compute mean-
ingful representations for soccer teams. We provided qualitative analysis using
soccer team vectors for team ranking and similarity search. Quantitative analysis
was carried out by investigating the usefulness of the approach by estimating the
market values of soccer teams. In both cases, STEVE succeeds to provide mean-
ingful and effective representations. Future work might investigate further upon
different weighting schemes for the season during which a match took place. For
example instead one can use the exponential distribution to weigh down past
seasons. Moreover, including the number of goals scored during a match and
accounting for the home advantage might help to capture more subtleties.
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