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Parameter Optimisation in a Family of Point-Set

Pattern-Discovery Algorithms
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Abstract. We propose a genetic algorithm (GA), OPTISIA, for ef-
ficiently finding optimal parameter combinations when running OM-
NISIA [15], a program that implements a family of analysis and com-
pression algorithms based on the SIA point-set pattern discovery algo-
rithm [20]. The GA, when given a point-set representation of a piece of
music as input, runs OMNISIA multiple times, attempting to evolve a
combination of parameter values that achieves the highest compression
factor on the input piece. When evaluated on two musicological tasks,
the system consistently selected well-performing parameters for Forth’s
algorithm [6] compared to combinations found in published evaluations
on the same musicological tasks.

Keywords: Pattern discovery · Genetic algorithm · Parameter opti-
mization · Music analysis · COSIATEC · OMNISIA · Geometric algo-
rithms · Forth’s algorithm · Point sets.

1 Introduction

Genetic algorithms (GAs) provide a biologically inspired, evolutionary approach
to optimisation problems [9]. Previous work suggests that GAs can provide a
time-efficient and custom-fit solution when finding optimal parameter combi-
nations in a variety of contexts [7,14]. We propose a decimal-encoding-based
GA for efficiently finding optimal parameter combinations when running OM-
NISIA [15], a program that implements a family of analysis and compression al-
gorithms based on the SIA point-set pattern discovery algorithm [20]. OMNISIA
provides implementations of three compression-based pattern mining algorithms,
COSIATEC [21], SIATECCompress [18], and Forth’s algorithm [6]. Moreover, it
allows each of these algorithms to be run with a wide range of options, such as
replacing SIA with SIAR [3] or SIACT [5] or using chromatic or morphetic pitch
representations [16,17].

In this paper, we present OPTISIA, a GA-based algorithm that runs OM-
NISIA on a point-set representation of a piece of music multiple times, evolving a
combination of parameter values that optimise the achieved compression factor.
The output of this evolutionary process is the analysis of the input piece gener-
ated by the particular parameter value combination represented by the simplest
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chromosome in the final generation that achieves the maximum compression
factor on that input piece.

The choice of compression factor as our fitness function is motivated by the
widely accepted principle that the shortest (lossless) encodings of a data ob-
ject represent the best explanations for that object. This parsimony principle
(a.k.a. “Ockham’s razor”) can be traced back to antiquity and has been for-
malized in more recent times in various ways, including the MDL principle [22]
and Kolmogorov’s structure function [24]. A number of recent studies in music
information retrieval have demonstrated the potential of using the parsimony
principle for classification and clustering tasks [2,12,19] and thematic/motivic
analysis [18]. We have tested our new approach on two music-analytical tasks:
(1) discovering subject and countersubject entries in the fugues of the first book
of J. S. Bach’s Das Wohltemperirte Clavier [8]; and (2) discovering themes and
sections in the polyphonic version of the JKU Patterns Development Database
[4].

2 Previous work on parameter tuning with genetic
algorithms

Genetic algorithms present a biologically inspired approach to optimisation prob-
lems based on evolution [9]. This approach creates a map of parameters which
can be used as possible permutations of genes. To create a population, chromo-
somes are formed by chaining genes. The population is advanced by computing
a fitness score for each parameter combination (chromosome) to perform se-
lection. There are a number of widely used selection methods such as fitness
proportionate, roulette-wheel sampling, and elitist selection [10,13]. When the
number of chromosomes is reduced to a desired group (parent population), their
chromosomes are recombined in pairs (crossover) to produce members for the
next generation. Mutation might also be applied to chromosomes, resulting in
a potential value change on one or more of the genes. The randomly selected
value from the gene types is often allowed to hold its previous value, resulting
in no mutation. Genetic algorithms can, with the application of evolutionary
principles, evolve optimal or near-optimal parameter combinations over genera-
tions [7]. Genetic algorithms are able to reduce the time required for parameter
optimisation [7]. Moreover, they allow the encoding of interval values. This is
illustrated in [14], where the proposed decimal encoding of nominal and interval
parameters results in shorter chromosomes and the accuracy reaches that ob-
tained with binary encoding. Due to shorter chromosomes the search efficiency
of the approach is increased relative to other encoding methods.

3 OMNISIA

OMNISIA [15] is a Java program that implements a family of analysis and com-
pression algorithms based on the SIA point-set pattern discovery algorithm [20].



OPTISIA 3

OMNISIA provides implementations of three compression-based pattern dis-
covery algorithms, COSIATEC [21], SIATECCompress [18], and Forth’s algo-
rithm [6]. Moreover, it allows each of these algorithms to be run with a wide
range of optional parameter settings. The program has been used in a number
of previous studies on music analysis and generation [1,11,19].

The descriptions of the various algorithms implemented in OMNISIA and
their parameters are given in the original papers describing the algorithms and
summarised in [19]. Figure 1 illustrates the effect of some of these switches on
the output generated by OMNISIA for the C minor Prelude (BWV 871) from
Book 2 of J. S. Bach’s Das Wohltemperirte Clavier.

(a) (b)

(c) (d)

(e)

Fig. 1. Example outputs of the OMNISIA program. (a) Point set representation of
the prelude from BWV871 given as input. (b) Output generated by COSIATEC using
chromatic pitch. (c) Output generated by COSIATEC using morphetic pitch with -d
switch selected. (d) Output generated using morphetic pitch and compactness trawler
(-ct switch). (e) Output generated when SIA is replaced with SIAR.
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4 OPTISIA: An evolutionary approach to parameter
optimisation in OMNISIA

To solve the problem of optimising parameters for the OMNISIA program, the
various compression-based pattern mining algorithms and their options were
mapped. OMNISIA can use three base algorithms: COSIATEC (COS) [21],
SIATECCompress (SCo) [18], and Forth’s algorithm (FoA) [6]. The first two
require 7 switches, while Forth’s algorithm requires 11. The option values of
switches were sorted, based on them being nominal (enabled/disabled) or in-
terval (a range of values). The interval values were mapped to ordinal ones to
shrink the search space of the optimisation.

Switches Base Algorithms
Switch
prefixes

Nominal (N) or
Interval (I)

COSIATEC,
SIATECCompress

Forth

-d N X X
-ct N X X
-cta I X X
-ctb I X X
-rsd N X X
-r I X X

-rrt N X X

-crlow I X
-comlow I X

-cmin I X
-bbcomp N X

Table 1. The outline of option switch prefixes, their nominal–interval distinction and
presence when using different base algorithms to run OMNISIA.

To design a gene pool for each element of the chromosomes, the base algo-
rithm options need to be encoded. Following the work of Liu and Wang [14] the
values are decimal-encoded. Therefore, gene values range from 0 to 9 instead
of multiple genes describing a single parameter that has more than two types.
Decimal encoding was chosen to minimise the number of genes the algorithm has
to handle during evolution, lowering the required population size and generation
count, and consequently the running time of the algorithm.

Some options in OMNISIA are dependent on each other. Therefore, when
creating chromosomes, if the nominal values of ‘-ct’ (compactness trawling) [5]
or ‘-rsd’ (r superdiagonals) [3] are not set to ‘True’, the dependent parameters
of ‘-cta’ (minimum compactness of trawled patterns), ‘-ctb’ (minimum size of
trawled patterns), and ‘-r’ (number of superdiagonals used in SIAR) should
not hold values either. This relation between genes was respected during the
crossover and mutation operations of the GA. In a chromosome, if the dependent
values were not set beforehand, they were initialised at random to complete it.

To create the first population of chromosomes, genes were selected in ran-
domised combinations, discarding repeated ones, therefore no chromosomes were
the same at the start. The population size was chosen based on the amount of
genes required to encode all chromosomes (7 for COS and SCo, and 11 for FoA).
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Due to the selection and recombination described below, it is more beneficial to
choose population counts divisible by 3. Taking the calculated population sizes
based on Gutowski’s [9, p. 198] inequality, the previously described divisibility,
and the observed population counts [14,23] into account, we tested the execution
time and fitness on a single piece from the Fugues database [8] with population
sizes of 12, 15 and 18 for COS and SCo, and 18, 21 and 24 for FoA. If the achieved
maximum fitness scores were identical in two cases, the lower execution time was
used to set the population size, resulting in 12 for COS and SCo, and 21 for FoA.

Fitness scores were acquired by running the parameter combinations and
retrieving the resulting compression factors. To create subsequent generations,
1/3 of the population was kept with elitism-based selection. The genes of these
parent-chromosomes were recombined in randomly selected pairs to create 4
offspring chromosomes each, so that the new generation could reach the set pop-
ulation size. An illustration of the selection and recombination can be seen in
Figure 2. Finally, each gene within the offspring chromosomes had its muta-
tion chance set to 100/Clen where Clen is chromosome length. Genes undergoing
mutation were allowed to take their previous values at random.

Fig. 2. The figure shows the first 3 generations of chromosomes and their calculated
fitness scores. Green cells show parent chromosomes. Blue lines show the recombination.

The GA optimisation was terminated if the fitness failed to improve (stag-
nated) for k generations after a minimum of g generations, where k = 15 and
g = 30 for COS and SCo, and k = 30 and g = 40 for FoA, following the generation
count estimation proposed in [9, p. 198]. In most cases, the parameter optimi-
sation of each piece was stopped by the previously described early-termination
mechanism.
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Fig. 3. Results of using OPTISIA to discover subjects and countersubjects in the fugues
of the first book of J. S. Bach’s Das Wohltemperirte Clavier (left-hand side of figure, in
black); and discover repeated themes and sections in the JKU Patterns Development
Database (right-hand side of figure, in red). Values are for three-layer F1 score [19,
pp. 256–259]. See main text for details.

5 Evaluation

We evaluated our approach on two music-analytical tasks: (1) discovering sub-
ject and countersubject entries in the fugues of the first book of J. S. Bach’s Das
Wohltemperirte Clavier [8]; and (2) discovering themes and sections in the poly-
phonic version of the JKU Patterns Development Database [4]. Figure 3 summa-
rizes the results obtained. In each of the two experiments, the best-compressing
chromosome discovered by the GA for each of the three basic algorithms (COS,
SCo and FoA) was run in “Raw”, “BB” and “Segment” mode (see [19] for an ex-
planation of these terms). The rows headed “GA” in Fig. 3 show the three-layer
F1 (TLF1) scores [19, pp. 256–259] obtained using these nine algorithm–mode
combinations on the two experiments. The rows headed “M15” in Fig. 3 show,
for each experiment, for each basic algorithm and for each mode, the range of
TLF1 scores obtained for that experiment in [19] for parameter combinations
using the same algorithm and mode.

For FoA, Fig. 3 shows that, for all modes, the chromosome automatically
selected by the GA performed well compared with the best of the Forth chromo-
somes tested in [19] on both the JKU-PDD and the fugues database. However,
for COS and SCo, the GA typically selected a chromosome that performed poorly
relative to previously tested parameter combinations. Indeed, in several cases,
the GA-selected chromosome performs worse than any of the previously tested
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parameter combinations for the given algorithm and mode. We speculate that
the poorer performance of our GA-based approach on COS and SCo, is at least
partly due to the lower gene count in the chromosomes for these algorithms. Per-
haps this problem could be mitigated by increasing the probability of mutation
in order to avoid the population converging on a relatively poorly-performing,
but locally optimal, parameter combination.

6 Conclusion and suggestions for future work

We used a GA with compression factor as a fitness function to evolve parame-
ter combinations for the SIATEC-based analysis algorithms implemented in the
OMNISIA point-set analysis program. When the approach was evaluated on two
musicological pattern discovery tasks, it was found that it consistently selected
a high performing parameter value combination for Forth’s algorithm [6], but
relatively poorly-performing parameter combinations for COSIATEC [21] and
SIATECCompress [18]. It may be possible to improve the genetic algorithm’s ef-
ficiency, and possibly increase the achieved compression factor, by mapping the
base algorithm options that were mapped to hold ordinal values to interval ones
instead. In addition, the effect of using fitness proportionate selection should
be investigated. Lastly, it can be hypothesized that this approach, as opposed
to elitist selection, would require more computation time, but it would be less
prone to stagnation despite the presence of local maxima in the space defined
by the fitness function.
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