Skip to main content

Modular Rover Design for Exploration and Analytical Tasks

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2019)

Abstract

Rovers and other unmanned ground vehicles (UGV) were a matter of space exploration or post-disaster reconnaissance. Rovers work in tough conditions where presence of a human is uncomfortable or dangerous. This results in main requirements for rover - durable chassis, stable communication for direct control or transfer of data and task-specific tools for experiments and measurements. In this article we propose solutions for fulfilling those requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, E.T., Bonitz, R.G., Melko, J.P., Shiraishi, L.R., Chris Leger, P.: The Mars Exploration Rover instrument positioning system. In: 2005 IEEE Aerospace Conference, pp. 1–19, March 2005. https://doi.org/10.1109/AERO.2005.1559295

  2. Coates, A., et al.: The PanCam instrument for the ExoMars rover. Astrobiology 17(6–7), 511–541 (2017). https://doi.org/10.1089/ast.2016.1548

    Article  Google Scholar 

  3. Gannon, M.: See the curiosity rover’s 1st year on mars in 2 minutes (video), August 2013. https://www.space.com/22226-mars-rover-curiosity-time-lapse-video.html

  4. Kubota, T., Kunii, Y., Kuroda, Y., Working Group: Japanese lunar robotics exploration by co-operation with lander and rover. J. Earth Syst. Sci. 114(6), 777–785 (2005). https://doi.org/10.1007/BF02715963

  5. Kubota, T., Kuroda, Y., Kunii, Y., Nakatani, I.: Small, light-weight rover “micro5” for lunar exploration. Acta Astronaut. 52(2), 447–453 (2003). https://doi.org/10.1016/S0094-5765(02)00187-X. Selected Proceedings of the 4th IAA International conference on L ow Cost Planetary Missions

    Article  Google Scholar 

  6. Pastor, R., Vysocky, A., Siroky, P., Konecny, Z., Karnik, L.: Use of different simulation methods for design of experimental rover. MM Sci. J. 12(2018), 2616–2620 (2018). https://doi.org/10.17973/mmsj.2018_12_2018102

    Article  Google Scholar 

  7. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In: IJCAI, vol. 2, pp. 1340–1345 (1997)

    Google Scholar 

  8. Rice, M.S., et al.: Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars. J. Geophys. Res. Planets 122(1), 2–20 (2017). https://doi.org/10.1002/2016JE005200

    Article  Google Scholar 

  9. Rusconi, A., Magnani, P., Michaud, S., Gruener, G., Terrien, G., Merlo, A.: Dextrous lightweight arm for exploration (DELIAN). In: Advanced Space Technologies in Robotics and Automation (ASTRA), Noordwijk, The Netherlands (2015)

    Google Scholar 

  10. Schuster, M.J., et al.: Towards autonomous planetary exploration. J. Intell. Robot. Syst. 93(3), 461–494 (2017). https://doi.org/10.1007/s10846-017-0680-9

    Article  Google Scholar 

  11. Seeni, A., Schafer, B., Rebele, B., Tolyarenko, N.: Robot mobility concepts for extraterrestrial surface exploration. In: 2008 IEEE Aerospace Conference, pp. 1–14, March 2008. https://doi.org/10.1109/AERO.2008.4526237

  12. Sigüenza, M., Guillen, D., Arroyo, D., Cuellar, F.: Mobile robots development: a case study from robotics competitions and course projects. In: 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4, August 2017. https://doi.org/10.1109/INTERCON.2017.8079703

  13. Wedler, A., et al.: LRU-lightweight rover unit. In: Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) (2015)

    Google Scholar 

  14. Zahir, E., et al.: 6 wheeled mars rover design for terrain traversing, equipment servicing, astronaut assistance and on-board testing. In: 2016 IEEE/SICE International Symposium on System Integration (SII), pp. 917–922, December 2016. https://doi.org/10.1109/SII.2016.7844117

  15. Zhang, T., et al.: The progress of extraterrestrial regolith-sampling robots. Nat. Astron. 3(6), 487 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was sponsored among others by the Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration project, project number CZ.02.1.01/0.0/0.0/17_049/0008425 within the Operational Programme Research, Development and Education. This work has been also supported by specific research project SP2019/69 financed by the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pastor, R. et al. (2020). Modular Rover Design for Exploration and Analytical Tasks. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics