Skip to main content

Smartness and Autonomy for Shipboard Power Systems Reconfiguration

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11995))

Abstract

Smart Ships represent the next generation of ships that use ICT to connect all the devices on board for integrated monitoring and safety management. In such a context, the Shipboard Power System (SPS) is critical to the survival and safety of the ship because many accidents are due to electrical failures. The SPS reconfiguration consists of a variation of the electrical topology to supply energy to critical services successfully. The proposed reconfiguration procedure uses an autonomous and mission-oriented approach, and it employs a generic-purpose self-adaptive Fault Management System.

It delivers a set of possible runtime solutions that properly consider the current ship mission and operating scenario while dealing with multiple failures.

Solutions, achieving a partial reconfiguration of the system, are considered when a full recovery strategy is not available according to the current ship conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Goals are classified by different priority depending on the specific context. Thus, the reconfiguration system always prefers to address higher priority goals.

References

  1. Ackoff, R.L.: Towards a system of systems concepts. Manage. Sci. 17(11), 661–671 (1971)

    Article  Google Scholar 

  2. Bose, S., Pal, S., Natarajan, B., Scoglio, C.M., Das, S., Schulz, N.N.: Analysis of optimal reconfiguration of shipboard power systems. IEEE Trans. Power Syst. 27(1), 189–197 (2011)

    Article  Google Scholar 

  3. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_3

    Chapter  Google Scholar 

  4. Butler-Purry, K.: Multi-agent technology for self-healing shipboard power systems. In: Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems. IEEE (2005). 5–pp.

    Google Scholar 

  5. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7_4

    Chapter  Google Scholar 

  6. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_1

    Chapter  Google Scholar 

  7. Cossentino, M., Lodato, C., Lopes, S., Sabatucci, L.: MUSA: a middleware for user-driven service adaptation. In: Proceedings of the 16th Workshop “From Objects to Agents”, Naples, Italy, 17–19 June 2015

    Google Scholar 

  8. Cossentino, M., Lopes, S., Renda, G., Sabatucci, L., Zaffora, F.: A metamodel of a multi-paradigm approach to smart cyber-physical systems development. In: Proceedings of the 20th Workshop “From Objects to Agents”, Parma, Italy, 26–28 June (2019)

    Google Scholar 

  9. Cossentino, M., Sabatucci, L., Lopes, S.: Partial and full goal satisfaction in the MUSA middleware. In: Slavkovik, M. (ed.) EUMAS 2018. LNCS (LNAI), vol. 11450, pp. 15–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14174-5_2

    Chapter  Google Scholar 

  10. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

    Chapter  Google Scholar 

  11. Feliachi, A., Schoder, K., Ganesh, S., Lai, H.J.: Distributed control agents approach to energy management in electric shipboard power system. In: 2006 IEEE Power Engineering Society General Meeting. IEEE (2006). 6–pp.

    Google Scholar 

  12. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent technology: computing as interaction (a roadmap for agent based computing). University of Southampton (2005)

    Google Scholar 

  13. Ouyang, L., Li, Y., Tan, Y., Xiao, J., Cao, Y.: Reconfiguration optimization of DC zonal distribution network of shipboard power system. In: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 444–448. IEEE (2016)

    Google Scholar 

  14. Qureshi, N.A., Perini, A., Ernst, N.A., Mylopoulos, J.: Towards a continuous requirements engineering framework for self-adaptive systems. In: 2010 First International Workshop on Requirements@ Run. Time, pp. 9–16. IEEE (2010)

    Google Scholar 

  15. Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS, vol. 95, pp. 312–319 (1995)

    Google Scholar 

  16. Rushby, J.: Software verification and system assurance. In: 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods, pp. 3–10. IEEE (2009)

    Google Scholar 

  17. Rybakov, V.: Linear temporal logic with until and next, logical consecutions. Ann. Pure Appl. Log. 155(1), 32–45 (2008)

    Article  MathSciNet  Google Scholar 

  18. Sabatucci, L., Cossentino, M.: From means-end analysis to proactive means-end reasoning. In: Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 2–12. IEEE Press (2015)

    Google Scholar 

  19. Sabatucci, L., Lodato, C., Lopes, S., Cossentino, M.: Towards self-adaptation and evolution in business process. In: AIBP@ AI* IA, pp. 1–10. Citeseer (2013)

    Google Scholar 

  20. Sabatucci, L., Lodato, C., Lopes, S., Cossentino, M.: Highly customizable service composition and orchestration. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 156–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24072-5_11

    Chapter  Google Scholar 

  21. Sabatucci, L., Lopes, S., Cossentino, M.: MUSA 2.0: a distributed and scalable middleware for user-driven service adaptation. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 492–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_49

    Chapter  Google Scholar 

  22. Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., Cossentino, M.: GoalSPEC: a goal specification language supporting adaptivity and evolution. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 235–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45343-4_13

    Chapter  Google Scholar 

  23. Sabatucci, L., Cossentino, M., De Simone, G., Lopes, S.: Self-reconfiguration of shipboard power systems. In: Proceedings of the 3rd eCAS Workshop on Engineering Collective Adaptive Systems, Trento, Italy. IEEE (2018)

    Google Scholar 

  24. Sabatucci, L., De Simone, G., Cossentino, M.: Shipboard power system reconfiguration - a self-adaptation exemplar. In: Proceedings of the 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS 2018), Gothenburg, Sweden (2018)

    Google Scholar 

  25. Shariatzadeh, F., Kumar, N., Srivastava, A.K.: Optimal control algorithms for reconfiguration of shipboard microgrid distribution system using intelligent techniques. IEEE Trans. Ind. Appl. 53(1), 474–482 (2016)

    Article  Google Scholar 

  26. Solanki, J.M., Schulz, N.N., Gao, W.: Reconfiguration for restoration of power systems using a multi-agent system. In: Proceedings of the 37th Annual North American Power Symposium, pp. 390–395 (2005)

    Google Scholar 

  27. Weiß, G.: Adaptation and learning in multi-agent systems: some remarks and a bibliography. In: Weiß, G., Sen, S. (eds.) IJCAI 1995. LNCS, vol. 1042, pp. 1–21. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60923-7_16

    Chapter  Google Scholar 

  28. Xue, W., Fu, Y.: A two-step method for reconfiguration of shipboard power system. In: 2011 IEEE Electric Ship Technologies Symposium, pp. 167–172. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Sabatucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cossentino, M., Lopes, S., Renda, G., Sabatucci, L., Zaffora, F. (2020). Smartness and Autonomy for Shipboard Power Systems Reconfiguration. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics