

Graph Transformation for Software Engineers

Reiko Heckel • Gabriele Taentzer

Graph Transformation
for Software Engineers

With Applications to Model-Based
Development and Domain-Specific
Language Engineering

ISBN ISBN (eBook)

https://doi.org/10.1007/978-3-030-43916-3

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,

broadcasting, reproduction on microfilms or in any other physical way, and transmission or information

storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any

errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Reiko Heckel

University of Leicester

Leicester, UK

Gabriele Taentzer

Philipps-Universität Marburg

Marburg, Germany

978-3-030-43915-6 978-3-030-43916-3

https://doi.org/10.1007/978-3-030-43916-3

Forewords

Abstraction and modelling are two fundamental conceptual cornerstones of
informatics. They are absolutely key to software engineering. Engineers need
abstraction to dominate complexity of software design, implementation, de-
ployment and operation. They need precise models to formalise abstractions
and reason about them. Graphs are a powerful and general notation that can
formally model software structures. They can express snapshots of complex
relations among entities of different kinds. Through graph rewriting rules, one
can formalise how complex structures evolve over time. By formally analysing
models, both statically and dynamically, engineers can verify that the system
under design behaves as expected, prior to implementing it and perhaps dis-
covering later that it does not, thus wasting huge investments.

This book fills a much needed gap in the literature. It is the first com-
prehensive and systematic presentation of graph-based modelling and appli-
cations to the practice of software engineering. It can be of use in teaching,
to present the foundations of software modelling and verification. It is also
a reference book for researchers who are active in software modelling. I have
personally often founded my research on graph transformation: in my early
years, to formalise data structures and formally analyse them through parsing;
more recently, to formalise and analyse spatio-temporal systems (like smart
buildings) and their dynamics. I fully share the authors’ point that graph
transformations are an extremely powerful and tremendously useful tool that
can empower software engineers and help them to develop better and higher
quality software. This book is a decisive step in this direction.

Carlo Ghezzi

V

VI

Modern software development is a complex and messy business. Require-
ments are often incomplete. New development uses complex existing libraries,
tools and components that can fail. Multiple development teams proceed on
different schedules, making it difficult to assure that their artefacts will “talk
to each other” as intended.

I believe that keys to building quality software systems are abstraction
and automation. A graph-based approach is a universally applicable and very
powerful approach to modelling software at the level of abstraction where its
key properties can be represented. Graph rewriting approaches can then sup-
port a variety of formal analyses, from requirements completion via property
verification to the analysis of product lines. They also support “what if” ana-
lysis, allowing developers to determine the impact of their proposed change
before investing in fully implementing it. Therefore, it comes as little surprise
that graph-based approaches form a basis for many model-driven modelling
and development techniques.

I strongly recommend this book to researchers who want to learn about
software modelling, and to any senior undergraduate and graduate students
who want to be equipped with foundational knowledge and tools to be able
to build high-quality, safe software systems.

Marsha Chechik

Forewords

VII

This book is a pleasant and big surprise. The software engineering com-
munity needed such a book, but so far missed experts dedicating their effort
to writing it. Graphs and graph transformations play a key role in conceiving,
designing, and implementing complex software systems, but they work be-
hind the scenes, so their importance and that of their theoretical foundations
is often underestimated. Software engineering is full of models and graphical
notations that help experts to tackle very diverse problems, but oftentimes
they are defined only informally and lack rigour and precision. Most of these
models (can) have a graph-based (abstract) syntax and semantics: this is
where the foundations of graphs and graph transformations enter the scene,
and this is where a book like this is key.

While methodologies for software architecture design, configuration and
version management, and deployment employ diverse graph-based notations,
practitioners tend to underestimate the importance of formally defining these
models in order to manipulate and transform them in a systematic and sound
way. Practitioners and experts in foundations risk ignoring each other; ho-
wever they represent two sides of the same coin: sound engineering benefits
hugely from formal theories, and formal approaches find concrete applicati-
ons in software engineering. For example, the termination and confluence of
a graph transformation system can avoid some tedious problems, while con-
flicting rules can lead to non-deterministic transformations. These problems
can be understood and addressed based on formal foundations. There is a
big gap between problems and available theoretical solutions and this book
provides an excellent reference guide to help researchers, educators, students,
and practitioners to address and solve a large diversity of relevant problems.

Many different software engineering artefacts, including design models,
deployment topologies, and development processes, that can be rendered as
graphs and manipulated through graph transformations, could benefit from
the mature theory developed over the last thirty years. Many solutions have
been presented at conferences and workshops, but the necessary coherent col-
lection of their applications to software engineering problems was missing.
In the era of systematic literature reviews, this book moves a relevant step
ahead, and provides a unique entry point to the main theories and their ap-
plications in the context of software engineering, written by two key members
of the graph transformation community. Gabi and Reiko did a great job in
collecting, harmonising, and presenting all the different findings and solutions
in this book. We particularly appreciate the mix of rigour and formality along
with proper context and concrete examples.

We are sure that this book will quickly become an essential reference for
those interested in the formal underpinnings of graph-based software engi-
neering notations and artefacts, including those interested in exploiting the
results presented here to develop original solutions. This book also gives a
good overview of the body of work Gabi and Reiko have carried out over
recent decades, and we are happy they have decided to present it in this form.

Gregor Engels, Luciano Baresi and Mauro Pezzé

Forewords

VIII

I believe it was in 2010, during the International Conference on Graph
Transformation held at the University of Twente, that I expressed the view
that the field had matured enough to create both the need to consolidate the
state of affairs and the means to fulfil that need. The need, because so many
insights had been gained over the years, both about the modelling power
of graph transformation and how this can be used in software engineering;
insights, however, that were scattered over many papers and in danger of
being lost for being insufficiently visible. The means to fulfil the need existed,
because the body of knowledge was, by then, sufficiently extensive to merit a
monograph where all this could be written up in a unified way.

This is not to suggest that the step of consolidation had not been taken
before, successfully. In 1997, the “Handbook of Graph Grammars and Com-
puting by Graph Transformation” appeared, in three volumes, collecting the
views and achievements of a large cross-section of the research at the time,
doing full justice to its diversity. In 2006, the “Fundamentals of Algebraic
Graph Transformation” saw the light, presenting a thorough, unified over-
view of the theoretical underpinnings, taking into account the (then) most
recent advances. Neither of these, however, attempted to convey the message
to the software engineering community at large, that solution approaches for
some of the pervading problems can be found in graph transformation, while
also exposing enough of that field to give newcomers an entrance.

To my delight, I was approached immediately after ICGT 2010 by Gabriele
Taentzer and Reiko Heckel, who told me they had concrete plans for just such
a monograph as I had imagined. Now these are two scientists thoroughly
embedded in the field, who like hardly any others have both an excellent
grasp of the theory and an unsurpassed knack for applications in software
engineering. In other words, they were the perfect people for the job.

Time has passed since then. For scientists, it is really very hard to find
time to write a monograph with sufficient scope, when the day-to-day pres-
sure to also keep contributing to smaller, shorter-term, more urgent activities
almost always takes priority. I was very happy to be invited to the project, yet
eventually realised that I was unable to find the time to do my bit, and so had
to drop out as a co-author. As we all know, however, urgency does not equal
importance. I think it is supremely important that a book such as this one
has eventually been finished, and I applaud Reiko’s and Gabi’s perseverance.

The book that lies before you is everything one could wish it to be. Part
I presents the necessary background on a sufficiently formal level to be acces-
sible to anyone with a moderate knowledge of discrete mathematics, while at
the same time illustrating all presented concepts using recurring, small-scale
examples. More importantly still, Part II presents example after example of
how all this can indeed be used across the board in all phases of software
engineering, from requirements gathering through analysis, design and spe-
cification to testing. Not surprisingly, given the close proximity of graphs to
(UML-style) models, special attention is paid to concepts of model-driven
engineering.

Forewords

IX

It is a sign of the broad experience of the authors that each and every
chapter of Part II is actually based on published research, and ends with
extensive pointers to the research literature. Though the book is not meant
as a survey, and makes no claims to completeness, it does provide a very good
entrance.

Given these many qualities, the potential target audience of the book is
diverse. It can be used in academic teaching as the basis for any of a number of
courses, complemented with projects to be carried out in any of the topics of
Part II; it can act as a great source of reference; but most importantly, it can
serve as a means by which researchers and (research-minded) practitioners in
software engineering can get to know graph transformation. You can read the
book either way: from the more theoretical end, by working your way through
Part I and then browsing Part II, or from the more practical side, delving
into one of the topics in Part II and where necessary looking up the formal
details in Part I. All in all, there is little doubt in my mind that in years to
come, this book will be seen to stand out as an authoritative, go-to source of
information, indispensable on any (physical or digital) bookshelf.

Arend Rensink

Forewords

Preface

The digital transformation of society affects all aspects of human life, offering
new opportunities but also creating challenges and risks. More tasks will be
automated using software. Workflows and business processes are becoming
increasingly data driven. Engineering such systems correctly, efficiently and
fairly is one of the most critical problems facing us today.

Graphs are of great help when coping with the complexity of software
systems. They make explicit the designs of component architectures, process
flows and data structures, and provide visual and yet formal representations
to analyse them. In order to remain useful and relevant, many real-world
software systems are continuously adapted and improved. Their graph-based
models need to be transformed to plan or reflect this evolution.

In the Internet of Things, for example, mobile and embedded devices are
networked to enable new kinds of applications. We use terms such as “smart
home”, “smart grid”, or “smart city” to describe the highly complex, hete-
rogeneous and adaptive application networks that interact with both human
users and their physical environment. The topologies of such networks can be
represented by graphs consisting of nodes and edges, where each node repre-
sents a device or an application component and each edge models a logical or
physical network link. Smart applications are able to adapt their network’s to-
pology according to changing needs or context. Graph transformation systems
are uniquely suited to modelling such adaptations in a direct and visual way.
Based on a formal and executable semantics we can validate their operation
through simulations and formally analyse their properties.

Today’s real-world software systems, built using a variety of languages and
technologies and being often distributed, need to be able to evolve in order to
remain relevant while allowing integration with other systems. To deal with
the resulting heterogeneity and longevity, model-based software development
lifts essential software engineering tasks to a higher level of abstraction, where
we use models to represent the functionality and architecture of applications
in a technology-independent, domain-oriented way. This requires concepts and

XI

XII

tools that can bridge the gap between models and implementations through
code generation, reverse engineering and automated testing.

At the same time, software is becoming more and more data centric, re-
lying on and manipulating structured and unstructured data from a variety of
sources. Graphs provide a simple and flexible model for integrating and linking
data across formats and applications. They are at the heart of high-level and
scalable data representations, such as graph databases designed to store large
heterogeneous data sets, using graph-based technologies for efficient querying
and transformation.

Model-based engineering employs a variety of modelling languages and
techniques targeting application domains, such as Web or mobile applicati-
ons and cyber-physical or embedded systems. Such domain-specific modelling
languages require tool support for editing, simulation, compilation, analysis,
and version management, which, in order to be produced efficiently and cor-
rectly, should be based on definitions of the languages’ syntax and semantics.
Graphs and graph transformations provide a general mechanism to define
and represent models and to specify their manipulation through editing ope-
rations, model refactoring, simulation, translation, consistency checking, and
synchronisation across languages. They provide a technical (solution) space
for domain-specific language engineering, to support the definition and imple-
mentation of modelling languages.

Purpose of This Book
Research on graph transformation dates back over 50 years. Yet there is a
lack of accessible texts suitable for explaining the most commonly used con-
cepts, notations, techniques and applications without focusing on one parti-
cular mathematical representation or implementation approach. To provide a
general, widely accessible introduction, the first part of this book will present
the foundations of the area in a precise but largely informal way, providing an
overview of popular graph transformation concepts, notations and techniques.
In the second part, a range of applications of both model-based software engi-
neering and domain-specific language engineering are presented. The variety
of applications presented demonstrates how broadly graphs and graph trans-
formations can be used to model, analyse and implement complex systems
and languages.

Readers of This Book
We expect this book to be useful and accessible to both current and potential
users of graph transformation in the area of software engineering. If you are
interested in the use of graph-based modelling and transformation in applica-
tions to your own field, this should be the book for you whether you are in
academia or industry, had prior exposure to the area or are a complete novice.

Preface

XIII

While we hope to contribute to the standardisation of notation and pre-
sentation, the book is not intended to cover the current state of research.
Rather than being comprehensive, we aim to cover work that is both establis-
hed and stable, inevitably omitting important original results for the sake of
presentation.

Although not written as a course book, most parts are suitable for students
undertaking postgraduate study at either advanced MSc or PhD level.

Web Site

Further resources, including exercises (with solutions on request) and slides
of lectures based on the book, are available at

www.graph-transformation-for-software-engineers.org

with related links and information about updates and corrections.

Acknowledgements

The idea of writing this book was first raised in 2001 by Mauro Pezzé. A
first meeting in the afternoon sun during the second workshop on “Graph
Transformation and Visual Modelling Techniques” in Crete confirmed our
interest in the general concept, but produced little more than an outline before
we all went back to our daily business.

Several years went past before the plan was revived by a group including
Luciano Baresi, Gregor Engels, Hartmut Ehrig, Mauro Pezzé and the authors
of this book, leading to a first collection of draft chapters at various degrees
of completion, somewhat heterogeneous in content and style. Unfortunately,
activities fizzled out again: probably a case of too many cooks.

When, after several more years, the current authors revisited the concept,
Arend Rensink expressed an interest in a book that could provide a compre-
hensive introduction to graph transformation, and agreed to join the project.
With his involvement, we were able to develop most of Part I. Our different
backgrounds allowed us to view the same concepts from different points of
view and, in fruitful and passionate discussions, to develop a broader, more
balanced view of the material now presented in Part I. When, due to changing
priorities, Arend was no longer able to contribute, we continued to develop
Part II in the same spirit.

We are especially grateful to Ronan Nugent at Springer for his encourage-
ment and exceptional patience. At annual meetings during ETAPS throughout
the long years of this project, he provided us with invaluable guidance, helping
us to shape and position the book in the best possible way.

The entire book was proofread by Jens Kosiol and, in parts, by Anthony
Anjorin, Berthold Hoffmann and Steffen Vaupel, as well as students attending

Preface

www.graph-transformation-for-software-engineers.org

XIV

the module “Formal Methods in Software Engineering” in 2018/19 at the
University of Marburg, Germany.

We would like to thank our friends and colleagues who inspired, helped,
and motivated us to complete this project. Foremost among them, our friends
and mentors Hartmut Ehrig and Michael Löwe are sadly no longer with us.
Hartmut was the unstoppable driving force behind the double-pushout ap-
proach to graph transformation and a keen promoter of its application to
software engineering. Michael was instrumental in restarting the software-
engineering-related research during our formative years in Berlin based on his
single-pushout approach to graph transformation, which played a big part in
directing our own interests.

This book is important to us and, we believe, to the wider graph transfor-
mation community in giving access to the wealth of ideas and concepts deve-
loped in over 50 years of research on graph transformation and its application
to software engineering. As such, it is the first systematic and comprehen-
sive presentation of this range of material directed at an audience beyond the
core graph transformation community. This would not have been possible wit-
hout Arend’s contributions and critical feedback, for which we are especially
grateful.

Reiko Heckel and Gabriele Taentzer

Preface

Contents

Part I Foundations of Graph Transformation

1 Graphs for Modelling and Specification . 5
1.1 Feature Model for Graphs . 10
1.2 Basic Graph Structures . 11

1.2.1 Simple Graphs . 12
1.2.2 Multigraphs . 12
1.2.3 Summary. 13

1.3 Decorations: Labels, Types and Attributes 14
1.3.1 Labelled Graphs . 14
1.3.2 Typed Graphs . 15
1.3.3 Graphs with Attributes . 16
1.3.4 Summary. 19

1.4 Hypergraphs . 20
1.5 Advanced Graph Features . 22

1.5.1 Inheritance and Multiplicities . 22
1.5.2 Whole–Part Relationships and Spanning Trees 23
1.5.3 Ordering and Collections . 27

1.6 Summary and Further Reading . 28
1.6.1 Formal Definitions of Graphs . 28
1.6.2 Formal Considerations of Graph Attribution 29

2 Graph Transformation Concepts . 31
2.1 Feature Model for Graph Transformation Concepts 35
2.2 Rules and Transformations . 37

2.2.1 Elementary Rules . 38
2.2.2 Attribute Handling . 39
2.2.3 Example Rules . 40
2.2.4 Rule-Based Graph Transformation 42

2.3 Global Application Conditions: Injectivity and Gluing 46
2.3.1 Mapping Distinct Rule Nodes to the Same Graph Node 46

XV

XVI Contents

2.3.2 Gluing Conditions . 48
2.3.3 Summary: From Conservative to Radical 50

2.4 Advanced Graph Transformation Features 51
2.4.1 Graph Constraints . 51
2.4.2 Negative Application Conditions . 52
2.4.3 Path Expressions . 53
2.4.4 Multipatterns . 54
2.4.5 Merging . 59
2.4.6 Integrated Notation for Rules . 60
2.4.7 Inverting Rules . 61
2.4.8 Transactional Behaviour . 62

2.5 Summary and Further Reading . 62
2.5.1 Graph Transformation Approaches in the Literature . . . 63
2.5.2 Tool Support for Graph Transformations 64
2.5.3 Relations to Other Transformation Concepts 65

3 Beyond Individual Rules: Usage Scenarios and Control
Structures . 67
3.1 Feature Model for Rule Control Mechanisms 69
3.2 A Matter of Semantics . 69

3.2.1 Graph Languages . 72
3.2.2 Graph Relations . 73
3.2.3 Graph Transition Systems and Other Small-Step Models 74

3.3 Taking Control . 77
3.3.1 Motivating Example . 77
3.3.2 Procedural Abstraction and Parameter Passing 79
3.3.3 Scheduling Expressions . 80
3.3.4 Transactional Behaviour . 82

3.4 Summary and Further Reading . 84

4 Analysis and Improvement of Graph Transformation
Systems . 87
4.1 Techniques for Analysis and Construction 90

4.1.1 Language Properties . 91
4.1.2 Relation Properties . 93
4.1.3 System Properties . 93

4.2 Conflicts and Dependencies . 94
4.2.1 Conflicting and Dependent Transformations 95
4.2.2 Static Analysis of Conflicts and Dependencies 98
4.2.3 Using Conflict and Dependency Analysis to Improve

Graph Transformation Systems . 104
4.2.4 Confluence . 104

4.3 Termination . 106
4.3.1 Well-Founded Orders . 106
4.3.2 Layer Conditions . 107

Contents XVII

4.4 Graph Constraints as Invariants . 111
4.4.1 Positive and Conditional Constraints 112
4.4.2 Enforcing Graph Invariants by Application Conditions . 113
4.4.3 Verifying Invariants . 116

4.5 Model Checking . 117
4.5.1 System Properties . 117
4.5.2 Model Checking Procedure . 119
4.5.3 Potentials and Limits . 119

4.6 Graph Parsing . 120
4.7 Comparison of Analysis Techniques . 122

4.7.1 Graph Transformation Systems . 123
4.7.2 System Properties . 123
4.7.3 Analysis Outcomes . 123
4.7.4 Kinds of Analysis . 124

4.8 Summary and Further Reading . 124
4.8.1 Conflicting and Dependent Transformations 124
4.8.2 Termination . 125
4.8.3 Graph Constraints as Invariants . 125
4.8.4 Model Checking . 126
4.8.5 Graph Parsing . 127
4.8.6 Further Analysis Techniques . 127

Part II Graph Transformation in Software Engineering

5 Detecting Inconsistent Requirements in a Use-Case-
Driven Approach . 135
5.1 Integrated Modelling of Static and Dynamic Requirements 137
5.2 Analysing Requirement Models . 142

5.2.1 Conflicts and Dependencies Between Functional
Requirements . 143

5.2.2 Conflicts and Dependencies as Critical and Favourable
Signs for Consistency . 143

5.3 Summary and Further Reading . 149

6 Service Specification and Matching . 151
6.1 Developing Service-Oriented Software . 154
6.2 Service Specification . 155
6.3 Matching of Service Specifications . 157

6.3.1 Definition of Service Matching . 158
6.3.2 Operational Interpretation of Service Matching 161

6.4 Incremental Service Composition . 162
6.5 Summary and Further Reading . 164

6.5.1 Tools and Evaluation . 165
6.5.2 Extensions . 166

XVIII Contents

7 Model-Based Testing . 167
7.1 Test Models and Test Selection Criteria . 170
7.2 Generation of Test Cases . 174
7.3 Models as Test Oracles . 177

7.3.1 Partiality of Visual Contracts . 177
7.3.2 Handling and Reporting Failure . 177

7.4 Summary and Further Reading . 178
7.4.1 Tooling . 179
7.4.2 Extensions . 179

8 Reverse Engineering: Inferring Visual Contracts from
Java Programs . 181
8.1 Extraction of Visual Contracts . 182

8.1.1 Type Model and Scope . 182
8.1.2 From Tracing Object Access to Rule Instances 183
8.1.3 General Rules and Contracts . 187
8.1.4 Universal Context . 189
8.1.5 Attribute Conditions and Assignments 189
8.1.6 Multiobjects and Multipatterns . 190

8.2 Correctness and Completeness . 192
8.3 Summary and Further Reading . 193

8.3.1 Tooling . 194
8.3.2 Evaluation . 194
8.3.3 Extensions . 195
8.3.4 Applications . 195

9 Stochastic Analysis of Dynamic Software Architectures 197
9.1 A Peer-to-Peer Network Model . 200
9.2 Stochastic Graph Transformation . 205
9.3 Stochastic Analysis . 207

9.3.1 Simulation . 207
9.3.2 Model Checking . 208

9.4 Methodology . 211
9.4.1 Identify High-Level Requirements to Be Verified 211
9.4.2 Architectural Modelling . 212
9.4.3 Architectural Adaptation . 212
9.4.4 Validate the Model . 212
9.4.5 Determine Distributions . 212
9.4.6 Formalise and Encode Stochastic Properties 212
9.4.7 Analyse the Model . 213

9.5 Summary and Further Reading . 213

Contents XIX

10 Advanced Modelling-Language Definition: Integrating
Metamodelling with Graph Transformation 215
10.1 Language Design Process . 219
10.2 Requirements Elicitation . 221
10.3 Abstract Syntax Design . 222

10.3.1 Alphabet Definition . 222
10.3.2 Language Constraints . 223
10.3.3 Language Instances . 225
10.3.4 Language Grammar . 226
10.3.5 Language Parsing . 229

10.4 Model Editors . 230
10.4.1 Simple Editing Operations . 230
10.4.2 Complex Editing Operations . 231
10.4.3 Living with Inconsistencies . 231
10.4.4 Editor Generation . 233

10.5 Interpreter Semantics . 233
10.6 Language Evolution . 235
10.7 Summary and Further Reading . 237

11 Improving Models and Understanding Model Changes 239
11.1 An Example of Model Refactoring . 241
11.2 Model Quality Assurance by Smell Detection and Refactoring . 244

11.2.1 Model Quality . 244
11.2.2 A Sample Modelling Language . 246
11.2.3 Specification of Model Refactorings 247
11.2.4 Discussion . 250

11.3 Analysing the Interplay of Refactorings . 251
11.4 Understanding Model Changes . 255

11.4.1 Model Differencing . 255
11.4.2 Model Patching . 258

11.5 Summary and Further Reading . 259
11.5.1 Improving Models . 260
11.5.2 Understanding Model Changes . 260
11.5.3 Tool Support . 261

12 Translating and Synchronising Models . 263
12.1 Interrelated Models and Modelling Languages 266
12.2 Model Translation . 270

12.2.1 Properties of Model Translations . 272
12.2.2 Testing a Model Translation . 274

12.3 Triple Graph Grammars . 275
12.3.1 Operationalisation of TGGs . 276

12.4 Model Synchronisation . 279
12.4.1 Properties of Synchronisation . 281

12.5 Summary and Further Reading . 282

XX Contents

12.5.1 Extensions . 283
12.5.2 Tooling . 283
12.5.3 Applications . 284

References . 285

Index . 307

	Forewords
	Preface
	Purpose of This Book
	Readers of This Book
	Web Site
	Acknowledgements

	Contents

