Skip to main content

On Building Networks with Limited Stretch Factor

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1150))

Abstract

We consider non-reliable networks characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between any pair of such nodes in the faulty graph is at most k times the distance in the non-faulty graph. The smallest k that guarantees such property is called stretch factor of the network. In this work we review some known results about graphs that model networks with limited stretch factor and provide some new insights. In particular, we show that the split composition operation applied to minimal components like paths \(P_3\) and cycles \(C_3\) and \(C_5\) can be used to build networks with stretch factor less than two.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The syntax \( Gen ( \mathtt {opn};\mathtt {list\_of\_components} )\) emphasizes the generative definition of graphs in the class, like \( Forb ( \mathtt {list\_of\_subgraphs} )\) is often used to define graph classes according to forbidden subgraphs.

References

  1. Abam, M.A., Baharifard, F., Borouny, M.S., Zarrabi-Zadeh, H.: Fault-tolerant spanners in networks with symmetric directional antennas. Theor. Comput. Sci. 704, 18–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Comput. Geom. 44(9), 477–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cicerone, S.: Characterizations of graphs with stretch number less than 2. Electron. Notes Discret. Math. 37, 375–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cicerone, S.: Using split composition to extend distance-hereditary graphs in a generative way - (extended abstract). In: International Conference on Theory and Applications of Models of Computation (TAMC 2011), Lecture Notes in Computer Science, vol. 6648, pp. 286–297. Springer (2011)

    Google Scholar 

  6. Cicerone, S., Cermignani, M.: Fast and simple approach for polygon schematization. In: 12th International Conference on Computational Science and Its Applications (ICCSA 2012), LNCS, vol. 7333, pp. 267–279. Springer (2012)

    Google Scholar 

  7. Cicerone, S., D’Ermiliis, G., Di Stefano, G.: (k, +)-distance-hereditary graphs. In: Graph-Theoretic Concepts in Computer Science, 27th International Workshop, WG 2001, Lecture Notes in Computer Science, vol. 2204, pp. 66–77. Springer (2001)

    Google Scholar 

  8. Cicerone, S., Di Stefano, G.: Graph classes between parity and distance-hereditary graphs. Discret. Appl. Math. 95(1–3), 197–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cicerone, S., Di Stefano, G.: On the extension of bipartite to parity graphs. Discret. Appl. Math. 95(1–3), 181–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cicerone, S., Di Stefano, G.: Graphs with bounded induced distance. Discret. Appl. Math. 108(1–2), 3–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cicerone, S., Di Stefano, G.: (k, +)-distance-hereditary graphs. J. Discret. Algorithms 1(3–4), 281–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cicerone, S., Di Stefano, G.: Networks with small stretch number. J. Discret. Algorithms 2(4), 383–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cicerone, S., Di Stefano, G., Flammini, M.: Compact-port routing models and applications to distance-hereditary graphs. J. Parallel Distrib. Comput. 61(10), 1472–1488 (2001)

    Article  MATH  Google Scholar 

  14. Cicerone, S., Di Stefano, G., Handke, D.: Self-spanner graphs. Discret. Appl. Math. 150(1–3), 99–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cicerone, S., Di Stefano, G., Navarra, A.: Minimum-traveled-distance gathering of oblivious robots over given meeting-points. In: Proceedings of 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (Algosensors), LNCS, vol. 8847, pp. 57–72. Springer (2014)

    Google Scholar 

  16. Cicerone, S., Di Stefano, G., Navarra, A.: Minmax-distance gathering on given meeting-points. In: Proceedings of 9th International Conference on Algorithms and Complexity (CIAC), LNCS, vol. 9079, pp. 127–139. Springer (2015)

    Google Scholar 

  17. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cunningham, W.H.: Decomposition of directed graphs. SIAM. J. Algebr. Discret. Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hammer, P.L., Maffray, F.: Completely separable graphs. Discret. Appl. Math. 27(1–2), 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Howorka, E.: Distance-hereditary graphs. Q. J. Math. 28(4), 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kranakis, E., MacQuarrie, F., Ponce, O.M.: Connectivity and stretch factor trade-offs in wireless sensor networks with directional antennae. Theor. Comput. Sci. 590, 55–72 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. McQuillan, J., Richer, I., Rosen, E.: The new routing algorithm for the ARPANET. IEEE Trans. Commun. 28(5), 711–719 (1980)

    Article  Google Scholar 

  26. Merlin, P., Segall, A.: A failsafe distributed routing protocol. IEEE Trans. Commun. 27, 1280–1287 (1979)

    Article  MathSciNet  Google Scholar 

  27. Rao, M.: Solving some NP-complete problems using split decomposition. Discret. Appl. Math. 156(14), 2768–2780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schwartz, M., Stern, T.E.: Routing techniques used in computer communication networks. IEEE Trans. Commun. 28(4), 539–552 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafino Cicerone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicerone, S. (2020). On Building Networks with Limited Stretch Factor. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_84

Download citation

Publish with us

Policies and ethics