Skip to main content

Dynamic Routing and Bandwidth Provision Based on Reinforcement Learning in SDN Networks

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1151))

Abstract

In this study, we propose a smart routing and bandwidth allocation scheme, named Intelligent Routing and Bandwidth Allocation System with Reinforcement Learning (IRBRL), which mainly developed based on reinforcement learning techniques and SDN controller is responsible for creating and maintaining routing policies, including dynamic routing and link bandwidth allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Weighted Fair Queueing.

  2. 2.

    Quality Of Experience.

References

  1. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Prentice Hall Press, Upper Saddle River (2010)

    Google Scholar 

  2. Hawkinson, J.A., Bates, T.J.: Guidelines for creation, selection, and registration of an Autonomous System (AS). RFC 1930 (1996). https://doi.org/10.17487/RFC1930. https://rfc-editor.org/rfc/rfc1930.txt

  3. Moy, J.: OSPF Version 2. RFC 2328 (1998). https://doi.org/10.17487/RFC2328. https://rfc-editor.org/rfc/rfc2328.txt

  4. Dijkstra, E.W.: Numer. Math. 1(1), 269 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  Google Scholar 

  5. Savage, D., Ng, J., Moore, S., Slice, D., Paluch, P., White, R.: Cisco’s enhanced interior gateway routing protocol (EIGRP). RFC 7868 (2016). https://doi.org/10.17487/RFC7868. https://rfc-editor.org/rfc/rfc7868.txt

  6. Hopps, C.: Analysis of an equal-cost multi-path algorithm. RFC 2992 (2000). https://doi.org/10.17487/RFC2992. https://rfc-editor.org/rfc/rfc2992.txt

  7. Floyd, S., Allman, M.: Comments on the usefulness of simple best-effort traffic. RFC 5290 (2008). https://doi.org/10.17487/RFC5290. https://rfc-editor.org/rfc/rfc5290.txt

  8. Azzouni, A., Boutaba, R., Pujolle, G.: NeuRoute: predictive dynamic routing for software-defined networks. In: 13th International Conference on Network and Service Management, pp. 1–6 (2017). https://doi.org/10.23919/CNSM.2017.8256059

  9. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems. In: 16th Annual Symposium on Foundations of Computer Science (SFCS 1975), pp. 184–193 (1975). https://doi.org/10.1109/SFCS.1975.21

  10. Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: a reinforcement learning approach. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS 1993, pp. 671–678. Morgan Kaufmann Publishers Inc., San Francisco (1993). http://dl.acm.org/citation.cfm?id=2987189.2987274

  11. Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M., Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M.J., Estrada, G., Ma’ruf, K., Coras, F., Ermagan, V., Latapie, H., Cassar, C., Evans, J., Maino, F., Walrand, J., Cabellos, A.: SIGCOMM Comput. Commun. Rev. 47(3), 2 (2017). https://doi.org/10.1145/3138808.3138810. http://doi.acm.org/10.1145/3138808.3138810

  12. He, K.: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5353–5360 (2014). https://arxiv.org/abs/1412.1710

  13. Qiu, C., Cui, S., Yao, H., Xu, F., Yu, F.R., Zhao, C.: Futur. Gener. Comput. Syst. 92, 43 (2019). https://doi.org/10.1016/j.future.2018.09.023

    Article  Google Scholar 

  14. Amiri, R., Mehrpouyan, H.: Self-organizing mm wave networks: a power allocation scheme based on machine learning. In: 11th Global Symposium on Millimeter Waves, pp. 1–4 (2018). https://doi.org/10.1109/GSMM.2018.8439323

  15. Uzakgider, T., Cetinkaya, C., Sayit, M.: Comput. Netw. 92, 357 (2015). https://doi.org/10.1016/j.comnet.2015.09.027

    Article  Google Scholar 

  16. Lin, S., Akyildiz, I.F., Wang, P., Luo, M.: QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. In: IEEE International Conference on Services Computing, pp. 25–33 (2016). https://doi.org/10.1109/SCC.2016.12

  17. Yao, H., Mai, T., Xu, X., Zhang, P., Li, M., Liu, Y.: IEEE Internet Things J., 1 (2018). https://doi.org/10.1109/JIOT.2018.2859480

  18. Feature scaling. https://en.wikipedia.org/wiki/Feature_scaling

  19. Li, D., Shang, Y., Chen, C.: Software defined green data center network with exclusive routing. In: IEEE INFOCOM 2014 - IEEE Conference on Computer Communication, pp. 1743–1751 (2014). https://doi.org/10.1109/INFOCOM.2014.6848112

  20. Hsun, L.Y. https://github.com/THU-DBLAB/IRBRL

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Yie Leu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, YH., Leu, FY. (2020). Dynamic Routing and Bandwidth Provision Based on Reinforcement Learning in SDN Networks. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_1

Download citation

Publish with us

Policies and ethics