Skip to main content

Anomaly Detection and Extra Tree Regression for Assessment of the Remaining Useful Life of Lithium-Ion Battery

  • Conference paper
  • First Online:
Book cover Advanced Information Networking and Applications (AINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1151))

Abstract

The knowledge of the Remaining Useful Life (RUL) of Lithium-ion (Li+) battery is significant in battery management and helps in designing numerous fit-for-purpose systems. We implemented a segmentation-type anomaly detection to establish the changing characteristics of Li+ battery by using the measured voltage and temperature at different timesteps. Hence extracting useful changepoint features of the voltage and temperature transitions such as mean, variance, skewness, kurtosis and voltage for predicting the RUL of the battery with Extra Tree Regression (ETR) algorithm. The model was predicted to an accuracy of 96.25%–97.86% when the Mean Absolute Percentage Error (MAPE) of three Li+ batteries were tested. The robustness of this study makes it a very useful technique for Li+ battery prognosis, design and uncertainty estimation of the performance of critical systems depending on the Li+ battery power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sankararaman, S., Goebel, K.: Why is the remaining useful life prediction uncertain. In: Annual Conference of the Prognostics and Health Management Society, vol. 2013, October 2013

    Google Scholar 

  2. Samadani, S.E., Fraser, R.A. Fowler, M.: A review study of methods for lithium-ion battery health monitoring and remaining life estimation in hybrid electric vehicles (No. 2012-01-0125). SAE Technical Paper (2012)

    Google Scholar 

  3. Khelif, R., Chebel-Morello, B., Zerhouni, N.: Experience based approach for Li-ion batteries RUL prediction. IFAC-PapersOnLine 48(3), 761–766 (2015)

    Article  Google Scholar 

  4. Wang, D., Miao, Q., Pecht, M.: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J. Power Soures 239, 253–264 (2013)

    Article  Google Scholar 

  5. Dubarry, M., Liaw, B.Y.: Identify capacity fading mechanism in a commercial LiFePO4 cell. J. Power Sources 194(1), 541–549 (2009)

    Article  Google Scholar 

  6. Wang, X., Wei, X., Dai, H.: Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J. Energy Storage 21, 618–631 (2019)

    Article  Google Scholar 

  7. Liu, D., Pang, J., Zhou, J., Peng, Y., Pecht, M.: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53(6), 832–839 (2013)

    Article  Google Scholar 

  8. Liu, D., Wang, H., Peng, Y., Xie, W., Liao, H.: Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 6(8), 3654–3668 (2013)

    Article  Google Scholar 

  9. Liu, D., Luo, Y., Liu, J., Peng, Y., Guo, L., Pecht, M.: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput. Appl. 25(3–4), 557–572 (2014)

    Article  Google Scholar 

  10. Zhou, Y., Huang, M.: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 65, 265–273 (2016)

    Article  Google Scholar 

  11. Wu, J., Zhang, C., Chen, Z.: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy 173, 134–140 (2016)

    Article  Google Scholar 

  12. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., Dietmayer, K.: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Soures 239, 680–688 (2013)

    Article  Google Scholar 

  13. Barai, A., Widanage, W.D., McGordon, A., Jennings, P.: The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an LFP Li-ion battery. In: 2016 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–4. IEEE, June 2016

    Google Scholar 

  14. Zhang, S.S.: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 159(7), A920–A923 (2012)

    Article  Google Scholar 

  15. Long, B., Xian, W., Jiang, L., Liu, Z.: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. Microelectron. Reliab. 53(6), 821–831 (2013)

    Article  Google Scholar 

  16. He, W., Williard, N., Osterman, M., Pecht, M.: Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J. Power Sources 196(23), 10314–10321 (2011)

    Article  Google Scholar 

  17. Li, F., Xu, J.: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter. Microelectron. Reliab. 55(7), 1035–1045 (2015)

    Article  Google Scholar 

  18. Miao, Q., Xie, L., Cui, H., Liang, W., Pecht, M.: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53(6), 805–810 (2013)

    Article  Google Scholar 

  19. Ma, G., Zhang, Y., Cheng, C., Zhou, B., Hu, P., Yuan, Y.: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl. Energy 253, 113626 (2019)

    Article  Google Scholar 

  20. Wang, F.K., Mamo, T.: A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries. J. Power Sources 401, 49–54 (2018)

    Article  Google Scholar 

  21. Klass, V., Behm, M., Lindbergh, G.: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sources 270, 262–272 (2014)

    Article  Google Scholar 

  22. Eddahech, A., Briat, O., Bertrand, N., Deletage, J.Y., Vinassa, J.M.: Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 42(1), 487–494 (2012)

    Article  Google Scholar 

  23. Lin, H.T., Liang, T.J., Chen, S.M.: Estimation of battery state of health using probabilistic neural network. IEEE Trans. Ind. Inf. 9(2), 679–685 (2012)

    Article  Google Scholar 

  24. Kim, J., Lee, S., Cho, B.H.: Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans. Power Electron. 27(1), 436–451 (2011)

    Article  Google Scholar 

  25. Andre, D., Nuhic, A., Soczka-Guth, T., Sauer, D.U.: Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Eng. Appl. Artif. Intell. 26(3), 951–961 (2013)

    Article  Google Scholar 

  26. Feng, X., Li, J., Ouyang, M., Lu, L., Li, J., He, X.: Using probability density function to evaluate the state of health of lithium-ion batteries. J. Power Sources 232, 209–218 (2013)

    Article  Google Scholar 

  27. Ng, S.S., Xing, Y., Tsui, K.L.: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118, 114–123 (2014)

    Article  Google Scholar 

  28. Yuan, S., Wu, H., Zhang, X., Yin, C.: Online estimation of electrochemical impedance spectra for lithium-ion batteries via discrete fractional order model. In: 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE, October 2013

    Google Scholar 

  29. Remmlinger, J., Buchholz, M., Meiler, M., Bernreuter, P., Dietmayer, K.: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation. J. Power Sources 196(12), 5357–5363 (2011)

    Article  Google Scholar 

  30. Saha, B., Goebel, K.: Battery data set, NASA ames prognostics data repository. NASA Ames, Moffett Field, CA, USA (2007). https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository. Accessed 27 Jan 2019

  31. Bodenes, L., Naturel, R., Martinez, H., Dedryvère, R., Menetrier, M., Croguennec, L., Pérès, J.P., Tessier, C., Fischer, F.: Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J. Power Sources 236, 265–275 (2013)

    Article  Google Scholar 

  32. Wu, Y., Keil, P., Schuster, S.F., Jossen, A.: Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 lithium-ion pouch cell. J. Electrochem. Soc. 164(7), A1438–A1445 (2017)

    Article  Google Scholar 

  33. Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., Wohlfahrt-Mehrens, M.: Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power Sources 262, 129–135 (2014)

    Article  Google Scholar 

  34. Mathew, M., Janhunen, S., Rashid, M., Long, F., Fowler, M.: Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 11(6), 1490 (2018)

    Article  Google Scholar 

  35. Truong, C., Oudre, L., Vayatis, N.: Ruptures: changepoint detection in Python (2018). arXiv preprint arXiv:1801.00826

  36. Bole, B., Kulkarni, C.S., Daigle, M.: Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use. SGT, Inc., Moffett Field United States (2014)

    Google Scholar 

  37. Agubra, V., Fergus, J.: Lithium ion battery anode aging mechanisms. Materials 6(4), 1310–1325 (2013)

    Article  Google Scholar 

  38. Prasad, G.K., Rahn, C.D.: Model based identification of aging parameters in lithium ion batteries. J. Power Sour. 232, 79–85 (2013)

    Article  Google Scholar 

  39. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  40. Marée, R., Wehenkel, L., Geurts, P.: Extremely randomized trees and random subwindows for image classification, annotation, and retrieval. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis, pp. 125–141. Springer, London (2013)

    Chapter  Google Scholar 

  41. Xing, Y., Ma, E.W., Tsui, K.L., Pecht, M.: An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron. Reliab. 53(6), 811–820 (2013)

    Article  Google Scholar 

  42. Charkhgard, M., Farrokhi, M.: State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 57(12), 4178–4187 (2010)

    Article  Google Scholar 

  43. Chemali, E., Kollmeyer, P.J., Preindl, M., Emadi, A.: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J. Power Sour. 400, 242–255 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedu I. Ossai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ossai, C.I., Egwutuoha, I.P. (2020). Anomaly Detection and Extra Tree Regression for Assessment of the Remaining Useful Life of Lithium-Ion Battery. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_124

Download citation

Publish with us

Policies and ethics