Skip to main content

Animal Species Recognition Using Deep Learning

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1151))

Abstract

Wildlife-human and wildlife-vehicle encounters often result in injuries and sometimes fatalities. Thereby, this research aims to mitigate the negative impacts of these encounters in a way that makes the environment safer for both humans and animals. The proposed detection system is activated when an object approaches its field of vision, by the use of deep learning techniques, automated object recognition is achieved. For training, we use a labeled dataset from the British Columbia Ministry of Transportation and Infrastructure’s (BCMOTI) wildlife program, and the Snapshot Wisconsin dataset as well. By using Convolutional Neural Network (CNN) architectures, we can train a system capable of filtering images from these datasets and identifying its objects automatically. Our system achieved 99.8% accuracy in indicating an object being animal or human, and 97.6% accuracy in identifying animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huijser, M.P., McGowen, P., Fuller, J., Hardy, A., Kociolek, A., Clevenger, A.P., Smith, D., Ament, R.: Wildlife-vehicle collision reduction study. Report to congress. U.S. Department of Transportation, Federal Highway Administration, Washington D.C., USA (2008)

    Google Scholar 

  2. Meek, P.D., Ballard, G.-A., Fleming, P.J.S.: The pitfalls of camera trapping as a survey tool in Australia. Aust. Mammal. 37, 13–22 (2015)

    Article  Google Scholar 

  3. Nagy, P.B.: Exp. Methods Phys. Sci. 35, 161–221 (1999)

    Article  Google Scholar 

  4. Kays, R., Tilak, S., Kranstauber, B., Jansen, P.A., Carbone, C., Rowcliffe, M.J., Fountain, T., Eggert, J., He, Z.: Monitoring wild animal communities with arrays of motion sensitive camera traps. arXiv:1009.5718 (2010)

  5. Kuutti, J., Paukkunen, M., Aalto, M., Eskelinen, P., Sepponen, R.E.: Evaluation of a Doppler radar sensor system for vital signs detection and activity monitoring in a radio-frequency shielded room. Measurement 68, 135–142 (2015)

    Article  Google Scholar 

  6. Hamel, S., Killengreen, S.T., Henden, J.A., Eide, N.E., Roed-Eriksen, L., Ims, R.A., Yoccoz, N.G., O’Hara, R.B.: Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol. Evol. 4, 105–113 (2013)

    Article  Google Scholar 

  7. Rovero, F., Zimmermann, F., Berzi, D., Meek, P.: Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 24, 148–156 (2013)

    Google Scholar 

  8. Swanson, A.A., Kosmala, M., Lintott, C.C., Simpson, R.R., Smith, A., Packer, C.: Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. Data 2, 150026 (2015)

    Article  Google Scholar 

  9. Swinnen, K.R.R., Reijniers, J., Breno, M., Leirs, H.: A novel method to reduce time investment when processing videos from camera trap studies. PLoS ONE 9, e98881 (2014)

    Article  Google Scholar 

  10. Figueroa, K., Camarena-Ibarrola, A., Garcia, J., Villela, H.T.: Fast automatic detection of wildlife in images from trap cameras. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 940–947. Springer, Cham (2014)

    Google Scholar 

  11. Yu, X., Wang, J., Kays, R., Jansen, P.A.: Automated identification of animal species in camera trap image. EURASIP J. Image Video Process. 2013, 1–10 (2013)

    Article  Google Scholar 

  12. Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: IEEE International Conference on Image Processing (ICIP), pp. 858–862 (2014)

    Google Scholar 

  13. Gomez, A.l., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks. arXiv:1603.06169v2 (2016)

  14. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Cluen, J.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018)

    Article  Google Scholar 

  15. Snapshot Wisconsin. https://dnr.wi.gov/topic/research/projects/snapshot/ (Snapshot Wisconsin)

  16. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  17. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  18. Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Cornell University (2014)

    Google Scholar 

  22. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning arXiv:1705.03122 (2017)

  23. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  24. Gomez, A., Diez, G., Salazar, A., Diaz, A.: Animal identification in low quality camera-trap images using very deep convolutional neural networks and confidence thresholds. In: International Symposium on Visual Computing (2016)

    Google Scholar 

  25. Bank, D., Greenfeld, D., Hyams, G.: Improved training for self training by confidence assessments. arXiv:1710.00209v2 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mai Ibraheam or Kin Fun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibraheam, M., Gebali, F., Li, K.F., Sielecki, L. (2020). Animal Species Recognition Using Deep Learning. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_47

Download citation

Publish with us

Policies and ethics