Skip to main content

Multi-objective Priority Based Heuristic Optimization for Region Coverage with UAVs

  • Conference paper
  • First Online:
Book cover Advanced Information Networking and Applications (AINA 2020)

Abstract

Wireless network coverage can be disrupted by unexpected events. Temporary connectivity can be necessary in regions that are outside of the wireless communication infrastructure. One solution to that is the use of Unmanned Aerial Vehicles (UAV) as mobile base stations. UAVs can act like temporary “range extenders” in unexpected or temporary events. Low Altitude Platforms (LAPs), like drones, are specific types of UAVs that can be used for range extension tasks. As the drones have limited energy for their operation, their deployment should be optimized to get maximum possible coverage of the desired region with the constraints related to the capability of the overall system. This study proposed a novel framework for optimum coverage of the desired region with given drones by using heuristic optimization methods. Multi-objective optimization considers minimizing overlapping regions between drones, overflowing regions for the drones (coverage outside of the desired region), and flight distance of the drones from/to the base station. The trade-offs among constraints are resolved by using priority based optimization in which by setting weights the “user” can prioritize one or more constraints over the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Benchmarks are carried out on Linux (64-bit openSUSE Tumbleweed) platform using R (3.6.1) language, with AMD®Ryzen 9 3900X CPU.

References

  1. Al-Hourani, A., Kandeepan, S., Lardner, S.: Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 3(6), 569–572 (2014). https://doi.org/10.1109/LWC.2014.2342736

    Article  Google Scholar 

  2. Al-Turjman, F., Lemayian, J.P., Alturjman, S., Mostarda, L.: Enhanced deployment strategy for the 5G drone-BS using artificial intelligence. IEEE Access 7, 75999–76008 (2019). https://doi.org/10.1109/ACCESS.2019.2921729

    Article  Google Scholar 

  3. Ardia, D., Mullen, K., Peterson, B., Ulrich, J., Boudt, K.: DEoptim: Global Optimization by Differential Evolution (2016). https://cran.r-project.org/web/packages/DEoptim/index.html. Accessed 12 Sept 2019

  4. Binh, H.T.T., Nam, N.H.: Introduction to coverage optimization in WSNs. In: Binh, H.T.T., Dey, N. (eds.) Soft Computing in Wireless Sensor Networks, Chap. 6, pp. 115–136. CRC Press, Boca Raton (2019)

    Google Scholar 

  5. Chetlur Ravi, V.V., Dhillon, H.S.: Downlink coverage probability in a finite network of UAV base stations. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2016). https://doi.org/10.1109/SPAWC.2016.7536859

  6. Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. 25(3), 233–256 (2003). https://doi.org/10.1016/S0925-7721(02)00099-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, G.K., Das, S., Nandy, S.C., Sinha, B.P.: Efficient algorithm for placing a given number of base stations to cover a convex region. J. Parallel Distrib. Comput. 66(11), 1353–1358 (2006). https://doi.org/10.1016/j.jpdc.2006.05.004

    Article  MATH  Google Scholar 

  8. Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L.G., García-Rodríguez, A., Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 1 (2019). https://doi.org/10.1109/COMST.2019.2906228

  9. Gilli, M., Maringer, D., Schumann, E.: Numerical Methods and Optimization in Finance, 2nd edn. Academic Press, Cambridge (2019). https://doi.org/10.1016/B978-0-12-815065-8.00024-8

    Book  MATH  Google Scholar 

  10. Li, B., Fei, Z., Zhang, Y.: UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 6(2), 2241–2263 (2019). https://doi.org/10.1109/JIOT.2018.2887086

    Article  Google Scholar 

  11. Li, X., Guo, D., Yin, H., Wei, G.: Drone-assisted public safety wireless broadband network. In: 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 323–328 (2015). https://doi.org/10.1109/WCNCW.2015.7122575

  12. Lyu, J., Zeng, Y., Zhang, R.: UAV-aided offloading for cellular hotspot. IEEE Trans. Wireless Commun. 17(6), 3988–4001 (2018). https://doi.org/10.1109/TWC.2018.2818734

    Article  Google Scholar 

  13. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 1 (2019). https://doi.org/10.1109/COMST.2019.2902862

  14. Mullen, K.: Continuous global optimization in R. J. Stat. Softw. 60(6), 1–45 (2014). https://doi.org/10.18637/jss.v060.i06

    Article  Google Scholar 

  15. Palatinus, E., Bánhelyi, B.: Circle covering and its applications for telecommunication networks. In: Proceedings of the 8th International Conference on Applied Informatics, pp. 255–262 (2010). http://icai.ektf.hu/pdf/ICAI2010-vol2-pp255-262.pdf

  16. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  17. Scrucca, L.: GA: Genetic Algorithms (2019). https://cran.r-project.org/web/packages/GA/index.html. Accessed 12 Sept 2019

  18. Sharafeddine, S., Islambouli, R.: On-demand deployment of multiple aerial base stations for traffic offloading and network recovery. Comput. Netw. 156, 52–61 (2019). https://doi.org/10.1016/j.comnet.2019.03.016

    Article  Google Scholar 

  19. Storn, R.M.: Differential Evolution (DE) for Continuous Function Optimization (an algorithm by Kenneth Price and Rainer Storn). http://www1.icsi.berkeley.edu/~storn/code.html. Accessed 31 Oct 2019

  20. US Department of Transportation: Unmanned Aircraft System (UAS) Service Demand 2015–2035: Literature Review & Projections of Future Usage, Version 0.1. Technical report, US Department of Transportation (2013). https://www.hsdl.org/?view&did=749449. Accessed 16 Oct 2019

  21. Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: GenSA: Generalized Simulated Annealing (2019). https://cran.r-project.org/web/packages/GenSA/index.html. Accessed 12 Sept 2019

  22. Younis, M., Akkaya, K.: Strategies and techniques for node placement in WSNs: a survey. Ad Hoc Netw. 6(4), 621–655 (2008). https://doi.org/10.1016/j.adhoc.2007.05.003

    Article  Google Scholar 

  23. Yun, Z., Bai, X., Xuan, D., Lai, T.H., Jia, W.: Optimal deployment patterns for full coverage and \(k\)-connectivity \((k \le 6)\) WSNs. IEEE/ACM Trans. Netw. 18(3), 934–947 (2010). https://doi.org/10.1109/TNET.2010.2040191

    Article  Google Scholar 

  24. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016). https://doi.org/10.1109/MCOM.2016.7470933

    Article  Google Scholar 

  25. Zhang, L., Li, D., Zhu, H., Cui, L.: OPEN: an optimisation scheme of N-node coverage in WSNs. IET Wirel. Sens. Syst. 2(1), 40–51 (2012). https://doi.org/10.1049/iet-wss.2011.0012

    Article  Google Scholar 

  26. Zorbas, D., Pugliese, L.D.P., Razafindralambo, T., Guerriero, F.: Optimal drone placement and cost-efficient target coverage. J. Netw. Comput. Appl. 75, 16–31 (2016). https://doi.org/10.1016/j.jnca.2016.08.009

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Mostarda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kilic, K.I., Gemikonakli, O., Mostarda, L. (2020). Multi-objective Priority Based Heuristic Optimization for Region Coverage with UAVs. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_68

Download citation

Publish with us

Policies and ethics