Skip to main content

Deep BOO! Automating Beam Orientation Optimization in Intensity-Modulated Radiation Therapy

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Abstract

Intensity-Modulated Radiation Therapy (IMRT) is a method for treating cancers by aiming radiation to cancer tumor while minimizing radiation to organs-at-risk. Usually, radiation is aimed from a particle accelerator, mounted on a robot manipulator. Computationally finding the correct treatment plan for a target volume is often an exhaustive combinatorial search problem, and traditional optimization methods have not yielded real-time feasible results. Aiming to automate the beam orientation and intensity-modulation process, we introduce a novel set of techniques leveraging (i) pattern recognition, (ii) monte carlo evaluations, (iii) game theory, and (iv) neuro-dynamic programming. We optimize a deep neural network policy that guides Monte Carlo simulations of promising beamlets. Seeking a saddle equilibrium, we let two fictitious neural network players, within a zero-sum Markov game framework, alternatingly play a best response to their opponent’s mixed strategy profile. During inference, the optimized policy predicts feasible beam angles on test target volumes. This work merges the beam orientation and fluence map optimization subproblems in IMRT sequential treatment planning system into one pipeline. We formally introduce our approach, and present numerical results for coplanar beam angles on prostate cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aleman, D.M., Kumar, A., Ahuja, R.K., Romeijn, H.E., Dempsey, J.F.: Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. J. Glob. Optim. 42(4), 587–607 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ogunmolu, O., Gans, N., Summers, T.: Minimax iterative dynamic game: application to nonlinear robot control tasks. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6919–6925 (2018). https://doi.org/10.1109/IROS.2018.8594037

  3. Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games. In: International Conference on Machine Learning, pp. 805–813 (2015)

    Google Scholar 

  4. Craft, D.: Local beam angle optimization with linear programming and gradient search. Phys. Med. Biol. 52(7), N127 (2007)

    Article  Google Scholar 

  5. Bertsimas, D., Cacchiani, V., Craft, D., Nohadani, O.: A hybrid approach to beam angle optimization in intensity-modulated radiation therapy. Comput. Oper. Res. 40(9), 2187–2197 (2013)

    Article  MathSciNet  Google Scholar 

  6. Jia, X., Men, C., Lou, Y., Jiang, S.B.: Beam orientation optimization for intensity modulated radiation therapy using adaptive L2,1-minimization. Phys. Med. Biol. 56(19), 6205–6222 (2011)

    Article  Google Scholar 

  7. Bortfeld, T., Schlegel, W.: Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys. Med. Biol. 38(2), 291 (1993)

    Article  Google Scholar 

  8. Djajaputra, D., Wu, Q., Wu, Y., Mohan, R.: Algorithm and performance Of A clinical imrt beam-angle optimization system. Phys. Med. Biol. 48(19), 3191 (2003)

    Article  Google Scholar 

  9. Pugachev, A., Xing, L.: Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy. Phys. Med. Biol. 46(9), 2467 (2001)

    Article  Google Scholar 

  10. Li, Y., Yao, J., Yao, D.: Automatic beam angle selection in IMRT planning using genetic algorithm. Phys. Med. Biol. 49(10), 1915 (2004)

    Article  Google Scholar 

  11. Wang, C., Dai, J., Hu, Y.: Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming. Phys. Med. Biol. 48(24), 4065 (2003)

    Article  Google Scholar 

  12. Lim, G.J., Ferris, M.C., Wright, S.J., Shepard, D.M., Earl, M.A.: An optimization framework for conformal radiation treatment planning. INFORMS J. Comput. 19(3), 366–380 (2007)

    Article  MathSciNet  Google Scholar 

  13. D’Souza, W.D., Meyer, R.R., Shi, L.: Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming. Phys. Med. Biol. 49(15), 3465 (2004)

    Article  Google Scholar 

  14. Hou, Q., Wang, J., Chen, Y., Galvin, J.M.: Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. Med. Phys. 30(9), 2360–2367 (2003)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Agrawal, R.: Sample mean based index policies by O (log n) regret for the multi-armed bandit problem. Adv. Appl. Probab. 27(4), 1054–1078 (1995)

    Article  MathSciNet  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  18. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947 (2000)

    Article  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  20. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  21. Chung, M., Buro, M., Schaeffer, J.: Monte Carlo planning in RTS games. In: CIG. Citeseer (2005)

    Google Scholar 

  22. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  23. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  24. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  25. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: International Conference on Computers and Games (2006)

    Google Scholar 

  26. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: European Conference on Machine Learning (2006)

    Google Scholar 

  27. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, vol. 23. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogunmolu, O., Folkerts, M., Nguyen, D., Gans, N., Jiang, S. (2020). Deep BOO! Automating Beam Orientation Optimization in Intensity-Modulated Radiation Therapy. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_20

Download citation

Publish with us

Policies and ethics