Skip to main content

Fast Swept Volume Estimation with Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Abstract

Swept volume, the volume displaced by a moving object, is an ideal distance metric for sampling-based motion planning because it directly correlates to the amount of motion between two configurations. However, even approximate algorithms are computationally prohibitive. Our fundamental approach is the application of deep learning to efficiently estimate swept volume computation within a 5%–10% error for all robots tested, from rigid bodies to manipulators. However, even inference via the trained network can be computationally costly given the often hundreds of thousands of computations required by sampling-based motion planning. To address this, we demonstrate an efficient hierarchal approach for applying our trained estimator. This approach first pre-filters samples using a weighted Euclidean estimator trained via swept volume. Then, it selectively applies the deep neural network estimator. The first estimator, although less accurate, has metric space properties. The second estimator is a high-fidelity unbiased estimator without metric space properties. We integrate the hierarchical selection approach in both roadmap-based and a tree-based sampling motion planners. Empirical evaluation on the robot set demonstrates that hierarchal application of the metrics yields up to 5000 times faster planning than state of the art swept volume approximation and up to five times higher probability of finding a collision-free trajectory under a fixed time budget than the traditional Euclidean metric.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrams, S., Allen, P.K.: Computing swept volumes. J. Visual. Comput. Animat. 11(2), 69–82 (2000)

    Article  Google Scholar 

  2. Abdel-Malek, K., Yang, J., Blackmore, D., Joy, K.: Swept volumes: foundation, perspectives, and applications. Int. J. Shape Model. 12(01), 87–127 (2006)

    Article  Google Scholar 

  3. Himmelstein, J.C., Ferre, E., Laumond, J.P.: Swept volume approximation of polygon soups. IEEE Trans. Autom. Sci. Eng. 7(1), 177–183 (2010)

    Article  Google Scholar 

  4. Kuffner, J.J.: Effective sampling and distance metrics for 3D rigid body path planning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3993–3998 (2004)

    Google Scholar 

  5. Kim, Y.J., Varadhan, G., Lin, M.C., Manocha, D.: Fast swept volume approximation of complex polyhedral models. Comput.-Aided Des. 36(11), 1013–1027 (2004)

    Article  Google Scholar 

  6. Von Dziegielewski, A., Hemmer, M., Schömer, E.: High precision conservative surface mesh generation for swept volumes. IEEE Trans. Autom. Sci. Eng. 12(1), 183–191 (2015)

    Article  Google Scholar 

  7. Campen, M., Kobbelt, L.: Polygonal boundary evaluation of minkowski sums and swept volumes. Comput. Graph. Forum. 29, 1613–1622 (2010)

    Article  Google Scholar 

  8. Ekenna, C., Uwacu, D., Thomas, S., Amato, N.M.: Improved roadmap connection via local learning for sampling based planners. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3227–3234 (2015)

    Google Scholar 

  9. Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: Choosing good distance metrics and local planners for probabilistic roadmap methods. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 630–637 (1998)

    Google Scholar 

  10. Kavraki, L., Svestka, P., claude Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: Proceedings of IEEE International Conference Robotics and Automation (ICRA), pp. 566–580 (1996)

    Google Scholar 

  11. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  12. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  13. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of International Conference on Very Large Data Bases, pp. 574–584 (1995)

    Google Scholar 

  14. http://cs.unm.edu/tapialab/Publications/60appendix.pdf

  15. Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., Yoshida, E.: Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Robot. 28(2), 427–439 (2012)

    Article  Google Scholar 

  16. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access 2, 56–77 (2014)

    Article  Google Scholar 

  17. Voelz, A., Graichen, K.: Distance metrics for path planning with dynamic roadmaps. In: Proceedings of International Symposium on Robotics, pp. 126–132 (2016)

    Google Scholar 

  18. Palmieri, L., Arras, K.O.: Distance metric learning for RRT-based motion planning with constant-time inference. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 637–643 (2015)

    Google Scholar 

  19. Wolfslag, W.J., Bharatheesha, M., Moerland, T.M., Wisse, M.: RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization. IEEE Robot. Autom. Lett. 3(3), 1655–1662 (2018)

    Article  Google Scholar 

  20. Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L., Fiser, M., Davidson, J.: PRM-RL: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5113–5120 (2018)

    Google Scholar 

  21. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)

    Article  Google Scholar 

  22. McMahon, T., Jacobs, S., Boyd, B., Tapia, L., Amato, N.M.: Local randomization in neighbor selection improves PRM roadmap quality. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4441–4448 (2012)

    Google Scholar 

  23. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

Tapia, Chiang, and Sugaya are partially supported by the National Science Foundation under Grant Numbers IIS-1528047 and IIS-1553266 (Tapia, CAREER). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Tapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiang, HT.L., Faust, A., Sugaya, S., Tapia, L. (2020). Fast Swept Volume Estimation with Deep Learning. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_4

Download citation

Publish with us

Policies and ethics