Skip to main content

An Experimental Analysis on the Necessary and Sufficient Conditions for the RRT* Applied to Dynamical Systems

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Abstract

In this paper, we study some properties of several local planners for nonholonomic dynamical systems to achieve asymptotic global optimality through the RRT*. More specifically, we study the conditions that a local steering method must have to produce global optimal trajectories in an environment with obstacles. The main properties we analyse in the steering methods are the following: (1) Whether or not the steering method produces local optimal motion primitives (optimal letters). (2) Whether or not the steering method concatenates the local optimal primitives in such a way that the resulting concatenation is also optimal (optimal words). (3) Whether or not the steering method produces trajectories that respect the topological property. Experimentally, it is studied how those properties affect the speed of convergence to the globally optimal solution, moreover, their sufficiency and necessity is also validated, all making use of the problem of finding the time-optimal trajectories for a differential drive robot in the presence of obstacles. We also discard conditions that show not to be necessary and we give some insight on the necessary and sufficient conditions for the RRT* to asymptotically converge to optimal trajectories, which is indeed the sough research target.

The authors would like to acknowledge the financial support of Intel Corporation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A system is small-space locally controllable at \(z \in X\), if for any neighbourhood \(\varOmega \) of z, there exists a neighbourhood \(A_\varOmega (x)\) whose points are all accessible by the system without departing from \(\varOmega \). The system is small-space locally controllable if it is SSLC at any \(z \in X\).

  2. 2.

    The related cost is computed as \(t=s(t) + b\sigma (t)\), where s(t) is the rectified path length in \(\mathbb {R}^2\), the plane of robot position, and \(\sigma (t)\) is the rectified arc length in \(S^1\), the circle of robot orientations, see [1] for details.

References

  1. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity differential drive vehicles. Int. J. Rob. Res. 21(3), 199–217 (2002)

    Article  Google Scholar 

  2. Barraquand, J., Latombe, J.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121–155 (1993)

    Article  MathSciNet  Google Scholar 

  3. Canny, J.: The Complexity of Robot Motion Planning. ACM Doctoral Dissertation Award. MIT Press, Cambridge (1988)

    Google Scholar 

  4. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977)

    Article  MathSciNet  Google Scholar 

  5. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Rob. Res. 21(3), 233–255 (2002). https://doi.org/10.1177/027836402320556421

    Article  MATH  Google Scholar 

  6. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: IEEE Conference on Decision and Control (2010)

    Google Scholar 

  7. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Rob. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  8. Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning for non-holonomic dynamical systems. In: 2013 IEEE International Conference on Robotics and Automation, pp. 5041–5047 (2013)

    Google Scholar 

  9. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  10. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  Google Scholar 

  11. Laumond, J.P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)

    Article  Google Scholar 

  12. Laumond, J.P., Sekhavat, S., Lamiraux, F.: Guidelines in nonholonomic motion planning for mobile robots. In: Laumond, J.P. (ed.) Robot Motion Plannning and Control, pp. 1–53. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  14. Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. Int. J. Rob. Res. 35(5), 528–564 (2016)

    Article  Google Scholar 

  15. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. Int. J. Adv. Comput. Sci. Appl. 7(11) (2016). https://doi.org/10.14569/IJACSA.2016.071114

  16. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2537–2542 (2012)

    Google Scholar 

  17. Sekhavat, S., Laumond, J.P.: Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems. IEEE Trans. Robot. Autom. 14(5), 671–680 (1998)

    Article  Google Scholar 

  18. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: asymptotically optimal motion planning for robots with linear dynamics. In: 2013 IEEE International Conference on Robotics and Automation, pp. 5054–5061 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becerra, I., Yervilla-Herrera, H., Murrieta-Cid, R. (2020). An Experimental Analysis on the Necessary and Sufficient Conditions for the RRT* Applied to Dynamical Systems. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_48

Download citation

Publish with us

Policies and ethics