
Finding plans subject to stipulations on what
information they divulge

Yulin Zhang1, Dylan A. Shell1 and Jason M. O’Kane2

1 Texas A&M University, College Station TX, USA
2 University of South Carolina, Columbia SC, USA

Abstract. Motivated by applications where privacy is important, we study plan-
ning problems for robots acting in the presence of an observer. We first formu-
late and then solve planning problems subject to stipulations on the information
divulged during plan execution—the appropriate solution concept being both a
plan and an information disclosure policy. We pose this class of problem under
a worst-case model within the framework of procrustean graphs, formulating the
disclosure policy as a particular type of map on edge labels. We devise algorithms
that, given a planning problem supplemented with an information stipulation, can
find a plan, associated disclosure policy, or both jointly, if and only if some exists.
The pair together, comprising the plan and associated disclosure policy, may de-
pend subtly on additional information available to the observer, such as whether
the observer knows the robot’s plan (e.g., leaked via a side-channel). Our imple-
mentation finds a plan and a suitable disclosure policy, jointly, when any such
pair exists, albeit for small problem instances.

1 Introduction
In 2017, iRobot announced that they intended to sell maps of people’s homes, as gener-
ated by their robot vacuum cleaners. The result was a public outcry [1]. It is increasingly
clear that, as robots become part of our everyday lives, the information they could col-
lect (indeed, may need to collect to function) can be both sensitive and valuable. Infor-
mation about a robot’s internal state and its estimates of the world’s state are leaked by
status displays, logged data, actions executed, and information outputted — often what
the robot is tasked with doing. The tension between utility and privacy is fundamental.

Typically, robots strive to decrease uncertainty. Some prior work, albeit limited, has
illustrated how to cultivate uncertainty, examining how to constrain a robot’s beliefs so
that it never learns sensitive information (cf. [2,3,4]). In so doing, one precludes sensi-
tive information being disclosed to any adversary. But not disclosing secrets by simply
never knowing any, limits the applicability of the approach severely. This paper pro-
poses a more general, wider-reaching model for privacy, beyond mere ingénue robots.

This article posits a potentially adversarial observer and then stipulates properties
of what shall be divulged. The stipulation describes information that must be communi-
cated (being required to perform the task) as well as information (confidential informa-
tion potentially violating the user’s privacy) that shouldn’t be. Practical scenarios where

This work was supported by NSF awards IIS-1453652, IIS-1527436, and IIS-1526862.

ar
X

iv
:1

80
9.

09
68

2v
2

 [
cs

.R
O

]
 1

7
Ju

l 2
01

9

http://nsf.gov/awardsearch/showAward?AWD_ID=1453652
http://nsf.gov/awardsearch/showAward?AWD_ID=1527436
http://nsf.gov/awardsearch/showAward?AWD_ID=1526862

2 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

this model applies include: (i) privacy-aware care robots that assist the housebound,
providing nursing care; (ii) inspection of sensitive facilities by robots to certify compli-
ance with regulatory agreements, whilst protecting other proprietary or secret details;
(iii) sending data remotely to computing services on untrusted cloud infrastructure.

Fig. 1: Nuclear Site Inspection A
robot inspects a nuclear facility by tak-
ing a measurement at the ‘?’ location,
which depends on the facility type. But
the type of the facility is sensitive in-
formation that it must not be divulged
to any external observers. Pebble bed facility Breeder reactor

Figure 1 illustrates a scenario which, though simplistic, is rich enough to depict
several aspects of the problem. The task requires that a robot determine whether some
facility’s processing of raw radioactive material meets international treaty requirements
or not. The measurement procedure itself depends on the type of facility as the differ-
ing physical arrangements of ‘pebble bed’ and ‘breeder’ reactors necessitate different
actions. First, the robot must actively determine the facility type (checking for the pres-
ence of the telltale blue light in the correct spot). Then it can go to a location to make
the measurement, the measurement location corresponding with the facility type. But
the facility type is sensitive information and the robot must ascertain the radioactivity
state while ensuring that the facility type is not disclosed.

What makes this scenario interesting is that the task is rendered infeasible immedi-
ately if one prescribes a policy to ensure that the robot never gains sensitive informa-
tion. Over and above the (classical) question of how to balance information-gathering
and progress-making actions, the robot must control what it divulges, strategically in-
creasing uncertainty as needed, precisely limiting and reasoning about the ‘knowledge
gap’ between the external observer and itself. To solve such problems, the robot needs
a carefully constructed plan and must establish a policy characterizing what informa-
tion it divulges, the former achieving the goals set for the robot, the latter respecting all
stipulated constraints—and, of course, each depending on the other.

1.1 Contributions and itinerary

This paper contributes the first formulation, to our knowledge, of planning where solu-
tions can be constrained so as to require that some information be communicated and
other information obscured subject to an adversarial model of an observer. Nor do we
know of other work where both a plan and some notion of an interface (the disclo-
sure policy, in our terminology) can both be solved for jointly. The paper is organized
as follows: after discussion of related work, Section 3 develops the preliminaries, no-
tation, and formalism, Section 4 addresses an important technical detail regarding an
observer’s background knowledge, and Section 5 finding plans that satisfy the stipula-
tions. The last section reports experiments conducted with our implementation.

Finding plans subject to stipulations on what information they divulge 3

2 Related work

An important topic in HRI is expressive action (e.g., see [5]). In recent years there has
been a great deal of interest in mathematical models that enable generation of com-
municative plans. Important formulations include those of [6,7], proposing plausible
models for human observers (from the perspectives of presumed cost efficiency, sur-
prisal, or generalizations thereof). In this prior work, conveying information becomes
part of an optimization objective, whereas we treat it as a constraint instead. Both [6]
and [7] are probabilistic in nature, here we consider a worst-case model that is arguably
more suitable for privacy considerations: We ask what an observer can plausibly infer
via the history of its received observations. In doing so, we are influenced by the phi-
losophy of LaValle [8], following his use of the term information state (I-state) to refer
to a representation of information derived from a history of observations. Finally, since
parts of our stipulations may require concealing information, we point out there is also
recent work in deception (see [9,10]) and also obfuscation [11].

3 The model: worlds, robots and observers

Figure 2 illustrates the three-way relationships underlying the setting we examine. Most
fundamentally, a robot executes a plan to achieve some goal in the world, and the cou-
pling of these two elements generates a stream of observations and actions. Both the
plan and the action–observation stream are disclosed, though potentially only partially,
to a third party, we term the observer. The observer uses the stream, its knowledge of the
plan, and also other known structure to infer properties about the interaction. Addition-
ally, a stipulation is provided specifying particular properties that can be learned by the
observer. We formalize these elements in terms of p-graphs and label maps (see [12]).

Fig. 2: An overview of the setting: the robot
is modeled abstractly as realizing a plan to
achieve some goal in the world and a third
party observes, modeled as a filter. All three,
the world, plan, and filter have concrete rep-
resentations as p-graphs.

3.1 P-graph and its interaction language

We will start with the definition of p-graphs [12] and related properties:

Definition 1 (p-graph). A p-graph is an edge-labelled directed bipartite graph with
G = (Vy ∪ Vu, Y, U, V0), where
1) the finite vertex set V (G) := Vy ∪ Vu, whose elements are also called states, com-

prises two disjoint subsets: the observation vertices Vy and the action vertices Vu,
2) each edge e originating at an observation vertex bears a set of observations Y (e) ⊆ Y ,

containing observation labels, and leads to an action vertex,

4 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

3) each edge e originating at an action vertex bears a set of actions U(e) ⊆ U , con-
taining action labels, and leads to an observation vertex, and

4) a non-empty set of states V0 are designated as initial states, which may be either
exclusively action states (V0 ⊆ Vu) or exclusively observation states (V0 ⊆ Vy).

An event is an action or an observation. Respectively, they make up the sets U and
Y , which are called the p-graph’s action space and observation space. We will also
write Y (G) and U(G) for the observation space and action space of G. Though that is
a slight abuse of notation, the initial states will be written V0(G), similarly.

Intuitively, a p-graph abstractly represents a (potentially non-deterministic) transi-
tion system where transitions are either of type ‘action’ or ‘observation’ and these two
alternate. The following definitions make this idea precise.

Definition 2 (transitions to). For a given p-graph G and two states v, w ∈ V (G), a
sequence of events `1, . . . , `k transitions in G from v to w if there exists a sequence of
states v1, . . . , vk+1, such that v1 = v, vk+1 = w, and for each i = 1, . . . , k, there exists
an edge vi

Ei−→ vi+1 for which `i ∈ Ei, and Ei is a subset of Y (G) if vi is in Vy , or a
subset of U(G) if vi is in Vu.

Concisely, we let the predicate TRANSTO(v
s−→ w)G hold if there is some way of

tracing s on G from v to w, i.e., it is True iff v transitions to w under execution s. Note,
when G has non-deterministic transitions, v may transition to multiple vertices under
the same execution. We only require that w be one of them.

Definition 3 (executions and interaction language). An execution on a p-graph G is
a finite sequence of events s, if there exists some v ∈ V0(G) and some w ∈ V (G) for
which TRANSTO(v

s−→ w)G. The set of all executions on G is called the interaction
language (or, briefly, just language) of G and is written L(G).

Given any edge e, if U(e) = Le or Y (e) = Le, we speak of e bearing the set Le.

Definition 4 (joint-execution). A joint-execution on two p-graphs G1 and G2 is a se-
quence of events s that is an execution of both G1 and G2, written as s ∈ L(G1) ∩
L(G2). The p-graph producing all the joint-executions of G1 and G2 is their tensor
product graph with initial states V0(G1)× V0(G2), which we denote G1 ⊗G1.

A vertex from G1 ⊗ G2 is as a pair (v1, v2), where v1 ∈ V (G1) and v2 ∈ V (G2).
Next, the relationship between the executions and vertices is established.

Definition 5. The set of vertices reached by execution s in G, denoted VG
s , are the

vertices to which the execution s ∈ L(G) transitions, starting at an initial state. Sym-
bolically, VG

s := {v ∈ V (G) | ∃v0 ∈ V0(G), TRANSTO(v0
s−→ v)G}. Further, the set

of executions reaching vertex v in G is written as SGv := {s ∈ L(G) | v ∈ VG
s }.

The naming here serving to remind that V describes sets of vertices, S describes
sets of strings/executions. The collection of sets {SGv0 ,S

G
v1 , . . . ,S

G
vi . . . } can be used

to form an equivalence relation ∼
G

over executions, under which s1 ∼
G
s2 if and only

if VG
s1 = VG

s2 . This equivalence relation partitions the executions in L(G) into a set
of non-empty equivalence classes: L(G)/∼

G
= {[r0]G, [r1]G, [r2]G, . . . }, where each

Finding plans subject to stipulations on what information they divulge 5

equivalence class is [ri]G = {s ∈ L(G) | ri ∼
G
s} and ri is a representative execution in

[ri]G. The intuition is that any two executions that transition to identical sets of vertices
are, in an important sense, indistinguishable.

We shall consider systems where the vertices of a p-graph constitute the state that
is stored, acted upon, and/or represented—they are, thus, akin to a ‘sufficient statistic’.

Definition 6 (state-determined). A p-graph G is in a state-determined presentation,
or is in state-determined form, if ∀s ∈ L(G), |VG

s | = 1.

The procedure to expand any p-graph G into a state-determined presentation SDE(G)
can be found in Algorithm 2 of [12]. The language of p-graphs is not affected by state-
determined expansion, i.e., L(G) = L(SDE(G)).

Next, one may start with vertices and ask about the executions reaching those ver-
tices. (Later, this will be part of how an observer makes inferences about the world.)

Definition 7. Given any set of vertices B ⊆ V (G) in p-graph G, the set of executions
that reach exactly (i.e. reach and reach only) B is SGB := (∩v∈BSGv)\∪v∈(V (G)\B)SGv .

Above, the ∩v∈BSGv represents the set of executions that reach every vertex in B.
By subtracting the ones that also reach the vertices outside B, SGB describes the set
of executions that reach exactly B. In Figure 3, the executions reaching w3 are repre-
sented as SGw3

= {a1o1, a2o1}. But the executions reaching and reaching only {w3} are
SG{w3} = {a1o1} since a2o1 also reaches w4. Specifically, the equivalence class [ri]G

contains the executions that reach exactly VG
ri , so we have [ri]G = SGVG

ri

.

w4

w0

w1 w3

w2

{o1}

{o1, o2}{a2}

{a1, a2} Fig. 3: An example showing the difference be-
tween ‘reaches’ and ‘reaches exactly’ as distin-
guished in notation as SGw and SG{w}.

3.2 Planning problems and plans

In the p-graph formalism, planning problems and plans are defined as follows [12].

Definition 8 (planning problems and plans). A planning problem is a p-graph W
along with a goal region Vgoal ⊆ V (W); a plan is a p-graph P equipped with a termi-
nation region Vterm ⊆ V (P).

Planning problem (W,Vgoal) is solved by some plan (P, Vterm) if the plan always
terminates (i.e., reaches Vterm) and only terminates at a goal. Said with more precision:

Definition 9 (solves). A plan (P, Vterm) solves a planning problem (W,Vgoal) if there
is some integer which bounds length of all joint-executions, and for each joint-execution
and any pair of nodes (v ∈ V (P), w ∈ V (W)) reached by that execution simultane-
ously, the following conditions hold:
1) if v and w are both action nodes and, for every label borne by each edge originating

at v, there exist edges originating at w bearing the same action label;

6 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

2) if v and w are both observation nodes and, for every label borne by each edge orig-
inating at w, there exist edges originating at v bearing the same observation label;

3) if v ∈ Vterm and then w ∈ Vgoal;
4) if v /∈ Vterm then some extended joint-execution exists, continuing from v and w,

that does reach the termination region.

In the above, properties 1) and 2) describe a notion of safety; property 3) of cor-
rectness; and 4) of liveness. In the previous definition, there is an upper bound on joint-
execution length. We say that plan (P, Vterm) is c-bounded if, ∀s ∈ L(P), |s| ≤ c.

3.3 Information disclosure policy, divulged plan, and observer

The agent who is the observer sees a stream of the robot’s actions and observations, and
uses them to build estimates (or to compute general properties) of the robot’s interaction
with the world. But the observer’s access to this information will usually be imperfect—
either by design, as a consequence of real-world imperfections, or some combination
of both. Conceptually, this is a form of partial observability in which the stream of
symbols emitted as part of the robot’s execution is distorted into to the symbols seen by
the observer (see Figure 4). For example, if some pairs of actions are indistinguishable
from the perspective of the observer, this may be expressed with a function that maps
those pairs of actions to the same value. In this paper, this barrier is what we have
been referring to (informally, thus far) with the phrase information disclosure policy. It
is formalized as a mapping from the events in the robot’s true execution in the world
p-graph to the events received by the observer.

Fig. 4: The information disclosure
policy, divulged plan and information
stipulation. Even when the observer
is a strong adversary, the disclosure
policy and divulged plan can limit the
observer’s capabilities effectively.

Definition 10 (Information disclosure policy). An information disclosure policy is a
label map h on p-graph G, mapping from elements in the combined observation and
action space Y (G) ∪ U(G) to some set of events X .

The word ‘policy’ hints at two interpretations: first, as something given as a prede-
termined arrangement (that is, as a rule); secondly, as something to be sought (together
with a plan). Both senses apply in the present work; the exact transformation describing
the disclosure of information will be used first (in Section 5.1) as a specification and
then, later (in Section 5.2) as something which planning algorithms can produce. How
the information disclosure policy is realized in some setting depends on which sense
is apt: it can be interpreted as describing observers (showing that for those observers
unable to tell yi from yj , the stipulations can be met), or it can inform robot operation
(the stipulations require that the robot obfuscate u` and um via means such as explicit
concealment, sleight-of-hand, misdirection, etc.)

Finding plans subject to stipulations on what information they divulge 7

The observer, in addition, may also have imperfect knowledge of robot’s plan, which
is leaked or communicated from the side-channel. The disclosed plan is also modeled
as a p-graph, which may be weaker than knowing the actual plan. A variety of differ-
ent types of divulged plan are introduced later (in Section 4) to model different prior
knowledge available to an observer; as we will show, despite their differences, they can
be treated in a single unified way.

The next step is to provide formal definitions for the ideas just described. In the
following, we refer to h as the map from the set Y ∪ U to some set X , and refer to
its preimage h−1 as the map from X to subsets of Y ∪ U . The notation for a label
map h and its preimage h−1 is extended in the usual way to sequences and sets: we
consider sets of events, executions (being sequences), and sets of executions. They are
also extended to p-graphs in the obvious way, by applying the function to all edges.

For brevity’s sake, the outputs of h will be referred to simply as ‘the image space.’
The function h may either preserve information (when a bijection) or lose information
(with multiple inputs mapped to one output). The loss of information is felt in Y ∪U by
the extent to which some element of Y ∪U grows under h−1 ◦h, and for all ` ∈ Y ∪U ,
h−1 ◦ h(`) ⊇ {`}. In contrast, starting from x ∈ X , the uncertainty, apparent via set
cardinality under h−1, is washed out again when pushed forward to the image space X
via h ◦ h−1, i.e., ∀x ∈ X , h ◦ h−1(x) = {x}.
Definition 11 (I-state graph). For planning problem (W,Vgoal), plan (P, Vterm) and
information disclosure policy h : Y (W) ∪ U(W) → X , an observer’s I-state graph
I is a p-graph, whose inputs are from the image space of h (i.e., Y (I) ∪ U(I) = X),
with L(I) ⊇ h[L(W)]. The action space and observation space of I are also written as
Xu = U(I) and Xy = Y (I).

Inherited from the property of h ◦ h−1, for any I-state graph I , we have I = h ◦
h−1〈I〉, and ∀B ⊆ V (I), h−1[SIB] = Sh

−1〈I〉
B .

The observer’s I-state graph is a p-graph with events in the image space X . By
having L(I) ⊇ h[L(W)], we are requiring that strings generated in the world can be
safely traced on I .

Next, we formalize the crucial connection from the interaction of the robot and
world, via the stream of symbols generated, to the state tracked by the observer. Infer-
ence proceeds from the observer back to the world, though causality runs the other way
(glance again at Figure 2). We begin, accordingly, with that latter direction.

Definition 12 (compatible world states). Given observer I-state graph I , robot’s plan
(P, Vterm), world graph (W,Vgoal), and label map h, the world state w is compatible
with the set of I-states B ⊆ V (I) if ∃s ∈ L(W) such that s ∈ h−1[SIB]︸ ︷︷ ︸

(1)

∩L(P)︸ ︷︷ ︸
(2)

∩ SWw︸︷︷︸
(3)

.

Informally, each of the three terms can be interpreted as:
(1) An observer with I-state graph I may ask which sequences are responsible for hav-

ing arrived at states B. The answer is the set SIB , being the executions contained
in equivalence classes that are indistinguishable up to states in I . Those strings are
in the image space X , so, to obtain an answer in Y ∪ U , we take their preimages.
Every execution in h−1[SIB] leads the observer to B. Note that information may be
degraded by either h, I , or both.

8 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

(2) The set of executions that may be executed by the robot is represented by L(P). If
the observer knows that the robot’s plan takes, say, the high road, this information
allows the observer to remove executions involving the robot along the low road.

(3) The set of executions reaching world state w is represented by SWw . Two world
states w,w′ ∈ V (W) are essentially indiscernible or indistinguishable if SWw = SWw′ ,
as the sets capture the intrinsic uncertainty of world W .

When an observer is in B, and w is compatible with B, there exists some execution,
a certificate, that the world could plausibly be in w subject to (1) the current information
summarized in I; (2) the robot’s plan; (3) the structure of the world. The set of all world
states that are compatible with B is denotedWI,P

B , which is the observer’s estimate of
the world states when known information about W , P and I have all been incorporated.

A typical observer may know less about the robot’s future behavior than the robot’s
full plan. Weaker knowledge of how the robot will behave can be expressed in terms of
some p-graph D, such that L(D) ⊇ L(P). (Here the mnemonic is that it is the divulged
information about the robot’s plan, which one might imagine as leaked or communi-
cated via a side-channel.) Notice that the information divulged to the observer about the
robot’s execution is in the preimage space. The key reason for this modeling decision
is that information may be lost under label map h; an observer gains the greatest infor-
mation when the plan is disclosed in the preimage space and, as we consider worst-case
conditions, we are interested in what the strongest (even adversarial) observers might
infer. Thus, we study divulgence where the observer obtains as much as possible.

Definition 12 requires the substitution of the second term in the intersection with
L(D). When only D is given, the most precise inference replacesWI,P

B withWI,D
B :

Definition 13 (estimated world states). Given an I-state graph I , divulged plan p-
graph D, world p-graph W , and label map h, the set of estimated world states for
I-states B ⊆ V (I) isWI,D

B :=
{
w ∈ V (W)

∣∣∣ (Sh−1〈I〉
B ∩ L(D) ∩ SWw) 6= ∅

}
.

Observe that h−1[SIB] has been replaced with Sh
−1〈I〉

B , since h−1[SIB] = Sh
−1〈I〉

B .
The last remaining element in Figure 4 that needs to be addressed is the stipulation

of information. We do that next.

3.4 Information stipulations

We prescribe properties of the information that an observer may extract from its in-
put by imposing constraints on the sets of estimated world states. The observer, filter-
ing a stream of inputs sequentially, forms a correspondence between its I-states and
world states. We write propositional formulas with semantics defined in terms of this
correspondence—in this model the stipulations are written to hold over every reachable
set of associated states.3

First, however, we must delineate the scope of the estimated world states to be
constrained. Some states, in inherently non-deterministic worlds, may be inseparable
because they are reached by the same execution. In Figure 3, both w3 and w4 will be

3 We foresee other variants which are straightforward to modifications to consider; but we report
only on our current implementation.

Finding plans subject to stipulations on what information they divulge 9

Formula→ Clause1∧ . . .∧Clausen
Clause→ Literal1∨ . . .∨Literalm
Literal→ Symbol | ¬Symbol

Symbol→ v0 , v1, v2 , . . .
[VALUE]

〈vi 〉 ⇓ eval(vi
?∈ WI,D

B)

[NOT] 〈vi 〉 ⇓ w

〈¬vi 〉 ⇓ the negation of w

[OR] 〈`1〉 ⇓ w1 〈`2〉 ⇓ w2

〈`1 ∨ `2〉 ⇓ the logical or of w1 and w2

[AND] 〈c1〉 ⇓ w1 〈c2〉 ⇓ w2

〈c1 ∧ c2〉 ⇓ the logical and of w1 and w2

Fig. 5: The syntax and natural semantics of the information stipulations, where ci , `i ,
vi , represent a clause, literal, and symbol, respectively, and wi is the result of the evalu-
ation. The transition 〈e〉 ⇓ w denotes a transition, where e is any expression defined by
the grammar and w is the value yielded by the expression.

reached (non-deterministically) by execution a2o1. Since this is intrinsic to the world,
even when the observer has perfect observations, they remain indistinguishable. In the
remainder of this paper, we will assume that the world graph W is in state-determined
form, and we may affix stipulations to the world states knowing that no two vertices
will be non-deterministically reached by the same execution.

Second, we write propositional formulae to constrain the observer’s estimate. For-
mulaΦ is written in conjunctive normal form, consisting of symbols, literals and clauses
as shown in Fig. 5. Firstly, an atomic symbol vi is associated with each world state
vi ∈ V (W). If vi is contained in the observer’s estimates WI,D

B , we will evaluate
the corresponding symbol vi as True. It evaluates as False otherwise. With each sym-
bol grounded in this way, we evaluate literals and clauses compositionally, using logic
operators NOT, AND, OR. These are defined in the standard way, eventually enabling
evaluation of Φ on the observer’s estimateWI,D

B .
Let the predicate satfd(B,Φ) denote whether the stipulationΦ holds for I-states B.

Then a plan P satisfies the stipulations, if and only if
∀s ∈ L(P) ∩ L(W) B = VI

h(s) satfd(B,Φ).

4 The observer’s knowledge of the robot’s plan

Above, we hinted that observers may differ depending on the prior knowledge that
has been revealed to them; next we bring this idea into sharper focus. The information
associated with an observer is contained in a pair (I,D): the I-state graph I that acts as a
filter, succinctly tracking state from a stream of inputs, and knowledge of robot’s plan in
the form of a p-graph D. These two elements, through Definition 13, allow the observer
to form a correspondence with the external world W . The I-state graph I induces ∼

I

over its set of executions and hence over the joint-executions with the world, or, more
precisely, the image of those through h. By comparing the fineness of the relations
induced by two I-state graphs, one obtains a sense of the relative coarseness of the two
I-state graphs. As the present paper describes methods motivated by applications to
robotic privacy, we model the most capable adversary, taking the finest observer, that
is, one whose equivalence classes are as small as possible.

10 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

Definition 14 (finest observer). Given world graph W and the divulged plan D, an
I-state graph Ĩ is a finest observer if for any I-state graph I , we have ∀s ∈ L(W),

W Ĩ,D
h(s) ⊆ W

I,D
h(s).

Lemma 1. h〈W 〉 is a finest observer.

By way of a proof sketch, note that the observer only ever sees the image of the
world under the label map h, i.e. h〈W 〉. The p-graph h〈W 〉 serves as a natural I-state
graph for a finest observer as it allows the observer to have sufficient internal structure
to keep track of every world state.

The second element in the observer pair is D, information disclosed about the plan,
and presumed to be known a priori, to the observer. Depending on how much the ob-
server knows, there are multiple possibilities here, from most- to least-informed:

I. The observer knows the exact plan P to be executed.
II. The plan to be executed is among a finite collection of plans {P1, P2, . . . , Pn}.

III. The observer may only know that the robot is executing some plan, that is, the robot
is goal directed and aims to achieve some state in Vgoal.

IV. The observer knows nothing about the robot’s execution other than that it is on W .

It turns out that a p-graph exists whose language expresses knowledge for each of those
cases (we omit the details here). Furthermore, Section 3.3 details how the observer’s
knowledge of the world state (WI,D

B) from I-states B depends on Sh
−1〈I〉

B ∩ L(D) ∩
L(W), a set of executions that arrive at B in the I-state graph I . Because the observer
uses D to refine Sh

−1〈I〉
B , when L(P) (L(D) the gap between the two sets of execu-

tions represents a form of uncertainty. The ordering of the four cases, thus, can be stated
precisely in terms of language inclusion.

Now using the D as appropriate for each case, one may examine whether a given
plan and disclosure policy solves the planning problem (i.e., achieves desired goals in
the world) while meeting the stipulations on information communicated. Hence, we see
that describing disclosed information via a p-graph D is in fact rather expressive. This
section has also illustrated the benefits of being able to use both interaction language
and graph presentation views of the same structure.

5 Searching for plans and disclosure policy: the SEEK problems

In this section, we will show how to search for a plan (together with the label map).

Problem: SEEKx
(
(W,Vgoal),x, (Ĩ , D), h,Φ

)
SEEKx,λ

(
(W,Vgoal),x, (Ĩ ,x),λ,Φ

) Vars. to solve for:
x is a plan
λ is a label map

Input: A planning problem (W,Vgoal), a finest observer Ĩ , a divulged plan p-
graph D, information disclosure policy h and information stipulation Φ.

Output: A plan x = (P, Vterm) and/or label map λ = h such that plan (P, Vterm)
solves the problem (W,Vgoal), and ∀s ∈ L(W †) ∩ L(P), B = VI

h(s),

the information stipulation Φ is always evaluated as True on WI,D
B (i.e.

satfd(B,Φ) = True), else False.

Finding plans subject to stipulations on what information they divulge 11

Of the two versions of SEEK, the first searches for a plan, the second for a plan and
a label map, jointly. We consider each in turn.

5.1 Finding a plan given some predeterminedD

For SEEKx, first we must consider the search space of plans. Prior work [12] showed
that, although planning problems can have stranger solutions than people usually con-
template, there is a core of well-structured plans (called homomorphic solutions) that
suffice to determine solvability. As an example, there may exist plans which loop around
the environment before achieving the goal, but, they showed that in seeking plans, one
need only consider plans that short-circuit the loops.

The situation is rather different when a plan must satisfy more than mere goal
achievement: information stipulations may actually require a plan to loop in order to
ensure that the disclosed stream of events is appropriate for the observer’s eyes. (A con-
crete example appears in Fig. 7(c).) The argument in [12] needs modification for our
problem—a different construction can save the result even under disclosure constraints.
This fact is key to be able to implement a solution.

In this paper, without loss of generality, we focus on finding plans in state-determined
form. Next, we will examine the solution space closely.

Definition 15. A plan P is congruent on the world graph W , if and only if for every
pair of executions s1, s2 ∈ L(P) we have s1 ∼

P
s2 =⇒ s1 ∼

W
s2.

In other words, a plan that respects the equivalence classes of the world graph is
defined as a congruent plan. Next, our search space is narrowed further still.

Lemma 2. Given any plan (P, Vterm), there exists a plan (P ′, V ′term) that is congruent
on the world graph W and L(P ′) = L(P).

Proof. We give a construction from P of P ′ as a tree, and show that it meets the con-
ditions. To construct P ′, perform a BFS on P . Starting from V0(P), build a starting
vertex v0 in P ′, keep a correspondence between it and V0(P). Mark v0 as unexpanded.
Now, for every unexpanded vertex v in P ′, mark the set of all outgoing labels for its
corresponding vertices in P as Lv , create a new vertex v′ in P ′ for each label l ∈ Lv ,
build an edge from v to v′ with label l in P ′, and mark it as expanded. Repeat this
process until all vertices in P ′ have been expanded. Mark the vertices corresponding
to vertices in Vterm as V ′term. In the new plan (P ′, V ′term), no two executions reach the
same vertex. That is, ∀s1, s2 ∈ L(P ′), s1 6∼

P ′
s2. Hence, P ′ is congruent on W . In ad-

dition, since no new executions are introduced and no executions in P are eliminated
during the construction of P ′, we have L(P ′) = L(P). ut

Theorem 1. For problem SEEKx
(
(W,Vgoal),x, (I,D), h,Φ

)
, if there exists a solution

(P, Vterm), then there exists a solution (P ′, V ′term) that is both c-bounded and congruent
on W , where c = |V (W)| · |V (D)| · |V (I)|.
Proof. Suppose SEEKx has a solution (P, Vterm). Then the existence of a solution
(P ′, V ′term) which is congruent on W is implied by Lemma 2. Moreover, we have
CHECK

(
(W,Vgoal), (P, Vterm), D, I, h,Φ

)
=⇒ CHECK

(
(W,Vgoal), (P

′, V ′term), D,

I, h,Φ
)
, following from two observations:

12 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

(i.) if (P, Vterm) solves (W,Vgoal) then the means of construction ensures (P ′, V ′term)
does as well, and

(ii.) in checking Φ, the set of estimated world statesWI,D
{v} does not change for each

vertex v ∈ V (SDE(I)), since the triple graph is independent of the plan to be searched.
The set of I-states to be evaluated by Φ in SDE(I) is ∪s′∈h[L(P)∩L(W)]V

SDE(I)
s′ . Since

L(P) = L(P ′), the set of I-states to be evaluated is no altered and the truth of Φ
along the plan is preserved.

The final step is to prove that if there exists a congruent solution (P ′, V ′term), then there
exits a solution (P ′′, V ′′term) that is c-bounded. First, build a product graph T of W ,
D, and h−1〈SED(I)〉, with vertex set V (W)×V (D)×V (h−1〈SDE(I)〉). Then trace
every execution s in P ′ on T . If s visits the same vertex (vW , vD, vh

−1〈SDE(I)〉) mul-
tiple times, then vW , vD, and vh

−1〈SDE(I)〉 have to be action vertices, for otherwise
P ′ can loop forever and is not a solution (since P ′ is finite on W). Next, record the
action taken at the last visit of (vW , vP , vh

−1〈SDE(I)〉) as alast. Finally, build a new
plan (P ′′, V ′term) by bypassing unnecessary transitions on P ′ as follows. For each ver-
tex (vW , vP , vh

−1〈SDE(I)〉) that is visited multiple times, P ′′ takes action alast when
(vW , vP , vh

−1〈SDE(I)〉) is first visited. P ′′ terminates at the goal states without violat-
ing any stipulations, since it takes a shortcut in the executions of P ′ but—crucially—
without visiting any new observer I-states. In addition, P ′′ will visit each vertex in
T at most once, and the maximum length of its executions is |V (W)| × |V (D)| ×
|V (h−1〈SDE(I)〉)|. Since P ′′ preserves the structure of P ′ during this construction,
P ′′ is also congruent. ut

The intuition, and the underlying reason for considering congruent plans, is that
modifying the plan will not affect the stipulations if the underlying languages are pre-
served. The bound on the length then takes this further, modifying the language by
truncating long executions in the triple graph, thereby shortcutting visits to I-states that
do not affect goal achievement.

Accordingly, it suffices to look for congruent plans in the (very specific) form of
trees, since any plan has a counterpart that is congruent and in the form of a tree (see
Lemma 2 for detail). Theorem 1 states that the depth of the tree is at most c = |V (W)| ·
|V (D)| · |V (h−1〈SDE(I)〉)|. Therefore, we can limit the search space to trees of a
specific bounded depth. To search for a c-bounded solution, first we mark the vertex
(vW , vD, vh

−1〈SDE(I)〉) as: (i) a goal state if vW is a goal state in the world graph; (ii) as
satisfying Φ when all the world states appearing together with vh

−1〈SDE(I)〉 together
satisfy Φ. Then we will conduct an AND–OR search [13] on the triple graph:

• Each action vertex serves as an OR node, and an action should be chosen for the
action vertex such that it will eventually terminate at the goal states and all the
vertices satisfy Φ along the way.

• Each observation vertex is treated as an AND node, and there exists a plan that
satisfies Φ for all its outgoing observation vertices.

Finding plans subject to stipulations on what information they divulge 13

5.2 Search for plan and label map for the finest observer, disclosing the same

It is not merely the joint search that makes this, the second problem more interesting.
Whereas the first has a divulged plan D that is a priori fixed, the second uses x, the
plan that was found, as D. This latter fact makes the third substantially more difficult.

At a high level, it is not hard to see why: the definitions in the previous section
show that both P and D play a role in determining whether a plan satisfies a stipulation.
Where D is known and fixed beforehand (for example, in Case IV, D = W , or Case III,
D = P ∗), a solution can proceed by building a correspondence in the triple graph
W ⊗D ⊗ h−1〈SDE(I)〉 and searching in this graph for a plan. In SEEKx,λ, however,
one is interested in the case where D = P , where the divulged plan is tight, being the
robot’s plan exactly. We cannot search in the same product graph, because we can’t
make the correspondence since D has yet to be discovered, being determined only after
P has been found. Crucially, the feasibility of P depends on D, that is, on itself! Finding
such a solution requires an approach capable of building incremental correspondences
from partial plans. A key result of this paper is that SEEKx,λ is actually solvable without
resorting to mere generate-and-check.

Lemma 3. LetW be estimated world states for the finest observer h〈W 〉, and let w be
the world state which is observable to the robot. If there exists a solution for SEEKx,λ,
then there exists a solution that only visits each pair (w,W) at most once.

Proof. Let (P, Vterm) and h be a solution for SEEKx,λ. Suppose P visited (w,W) n
times. Let the set of actions taken at i-th visit be Ai. Then we can construct a new plan
(P ′, Vterm) which always takes An at (w,W). If P does not violate the stipulations,
then P ′ will never do since P ′ is a shortcut of P and never visits more I-states than P
does. In addition, P ′ will also terminate at the goal region if P does. ut

Theorem 2. If there exists a solution for SEEKx,λ
(
(W,Vgoal),x, (If ,x),λ,Φ

)
. then

there exists a plan P that takes (w,Wh〈W 〉,P
B) as its plan state, where w is the world

state and the set Wh〈W 〉,P
B consists of the estimated world states for I-states B. Fur-

thermore, if (w,Wh〈W 〉,P
B) ∈ V (P), then ∀w′ ∈ Wh〈W 〉,P

B , (w′,Wh〈W 〉,P
B) ∈ V (P).

Proof. Lemma 3 shows that we can treat (w,Wh〈W 〉,P
B) as the plan state for the plan to

be searched for.
Since w′ ∈ Wh〈W 〉,P

B , we have ∃s ∈ SWw′ ∩ L(P) ∩ h−1[Sh〈W 〉B]. Since s ∈ L(P),
s reaches w and h(s) reaches B, we have s reaches the tuple (w′,Wh〈W 〉,P

B). Hence,
(w′,Wh〈W 〉,P

B) ∈ V (P). ut

In searching for (P, Vterm), for any action state vp = (w,Wh〈W 〉,P
B), we determine:

w ∈ Vgoal : We must decide whether vp ∈ Vterm holds or not;
w 6∈ Vgoal : We must choose the set of nonempty actions to be taken at vp. It has to

be a set of actions, since these chosen actions are not only aiming for the goal but
also obfuscating each other under the label map.

14 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

A state vp = (w,Wh〈W 〉,P
B) is a terminating state in the plan whenWh〈W 〉,P

B ⊆ Vgoal.
With action choices for each plan state (w,Wh〈W 〉,P

B) and label map h, we are able
to maintain transitions of the estimated world states for B′ after observing the image x.
Now, if (w,Wh〈W 〉,P

B) is an action state, let the set of actions taken at w be Aw. Then
the label map h partitions the actions in ∪

w∈Wh〈W〉,P
B

Aw into groups, each of which
shares the same image. The estimated worlds states for B′ transition in terms of groups

Wh〈W 〉,P
B′ =

{
w′ ∈ V (W)

∣∣∣(w,Wh〈W 〉,P
B) 6∈ Vterm, w ∈ Wh〈W 〉,P

B ,

∃a ∈ Aw, h(a) = x, TRANSTO(w
a−→ w′)W

}
.

Conversely, if (w,Wh〈W 〉,P
B) is an observation state, let the observations available

at w be Ow. Then h also partitions the observations in ∪
(w,Wh〈W〉,P

B)6∈Vterm
Ow and

estimated world states for B′ transition as

Wh〈W 〉,P
B′ =

{
w′ ∈ V (W)

∣∣∣(w,Wh〈W 〉,P
B) 6∈ Vterm, w ∈ Wh〈W 〉,P

B ,

∃o′ ∈ Ow, h(o
′) = x, TRANSTO(w

o−→ w′)W
}
.

Instead of searching for the label map over the set of all actions and observations in
W , we will first seek a partial label map for all observations or chosen actions for world
states inWh〈W 〉,P

B , and then incrementally consolidate them. Each partial label map is a
partition of the events, making it easy to check whether two partial maps conflict when
they are consolidated. If two partial partitions disagree on a value, we backtrack in the
search to try another partition label map. Putting it all together as detailed in Fig. 6, we
can build a type of AND–OR search tree to incorporate these choices.

Fig. 6: Solving the SEEKx,λ problem via
generalized AND–OR search.

For a set of actions comprising a vertex
W0 two tiers of OR nodes are generated. The
first is over subsets (A0

1, A
0
2, . . . , A

0
m), be-

ing possible actions to the take; the second
chooses specific partitions of values Pi =
{X1, X2, . . . }, (i.e., partial label maps). A
given partition is expanded as an AND node
with each outgoing edge bearing a group of
events sharing the same image under the par-
tial label map.

Observation vertices W1 are expanded in
a similar way, but are simpler since we forgo
the step involving choosing actions.

If there exists a plan and label map then for eachW in the tree, there exists an action
choice under which there exists a safe partition, such that there exists a plan for all of
its children.

Let the number of actions and observations in W be |Y | and |U |, and the number of
vertices be |V |. There are 2|U ||V | action choices to consider, in the worst case, for all the

Finding plans subject to stipulations on what information they divulge 15

world states inW . The total number of partitions is a Bell number B|U |, where Bn+1 =∑n
k=0 C

k
nBk and B0 = 1. For each partition, the number of groups we must consider

is |U |. To expand an action vertex in the search tree, the computation complexity is
2|U ||V ||U |B|U |. Similarly, the complexity to expand an observation vertex is |Y |B|Y |.
If the depth of the tree is d, then the computational complexity is O(2d|U ||V |).

6 Experimental results

We implemented all the algorithms in this paper, the mainly using Python. The problem
SEEKx was implemented with both the algorithm we propose and via specification
in computation tree logic (CTL) (and then utilizing the nuXmv model-checker). All
executions in this section used a OSX laptop with a 2.4 GHz Intel Core i5 processor.

To experiment we constructed a 3× 4 grid for the nuclear inspection scenario of
Fig. 1. Including the differing facility types and radioactivity status, the world graph
is a p-graph with 96 vertices before state-determined expansion (154 vertices for the
state-determined form). The robot can move left, right, up, down one block at a time.
After the robot’s movement, it receives 5 possible observations: pebble bed facility or
not (only when located at the blue star), radioactivity high or low when located at one
of the ‘?’ cells, and cell is an exit. But the observer only knows the image of the actions
and observations under a label map. The stipulation requires that the observer should
learn the radioactivity strength, but should never know the facility type.

(a) (b)

Fig. 7: The scenario and results for SEEKx and SEEKx,λ problem: (a) shows the plan
found in the nuclear inspection scenario, when the observer knows nothing about robot’s
plan (The robot traces the gray arrow, then the blue one if blue light is seen, the red one
otherwise.) (b) shows the pentagonal world in SEEKx,λ, where the robot moves along
the gray lines.

Firstly, we SEEK the plan in the nuclear inspection scenario with a label map shown
in Fig. 7a. A plan can be found (with the world graph disclosed, D = W). It takes 11
seconds for the AND–OR search and 24 seconds for the CTL-based implementation to
find their solutions. The CTL solver takes longer, but it prioritizes finding the plan of
shortest length first. The plan found by CTL is shown in Fig. 7a. As the plan found by
AND–OR search is lengthy, we omit it.

Since, for the nuclear inspection scenario, SEEKx,λ doesn’t return any result within
reasonable time we opted to examine a smaller problem. Here a robot moves in the
pentagonal world shown in Fig. 7b. The robot can either decide to loop in the world
(a1) or exit the loop at some point (a2 or a3). We wish to find a plan and label map
pair so that the robot can reach some charging station. The observer should not be able

16 Yulin Zhang, Dylan A. Shell and Jason M. O’Kane

to distinguish the robot’s position when at either of the top two charging locations.
SEEKx,λ gives a plan which moves forward 6 times and then exits at the next time step.
Additionally, to disguise the actions and observations after the exit, it maps h(a2) =
h(a3) and h(o1) = h(o3). Note that in this problem, the robot reaches a goal, without
considering the stipulations, by taking the exit at the next time step. The stipulations
force the robot to navigate at least one loop in the world to conflate state for the sake of
the observer.

7 Conclusion
This paper continues a line of work on planning with constraints imposed on knowledge-
or belief-states. Our contribution is a substantial generalization of prior models, though,
as we see in the section reporting experiments, with grim implications for computational
requirements. Future work might consider techniques that incorporate costs, informed
methods (with appropriate heuristics), and other ways to solve certain instances quickly.

References

1. L. Vaas. (2017) Privacy dust-up as Roomba maker mulls selling maps of users’ homes.
[Online]. Available: https://nakedsecurity.sophos.com/2017/07/26/

2. J. M. O’Kane, “On the value of ignorance: Balancing tracking and privacy using a two-bit
sensor,” in WAFR, 2008, pp. 235–249.

3. J. M. O’Kane and D. A. Shell, “Automatic design of discreet discrete filters,” in Proceedings
of IEEE International Conference on Robotics and Automation, 2015, pp. 353–360.

4. Y. Zhang and D. A. Shell, “Complete characterization of a class of privacy-preserving track-
ing problems,” Intern. J. of Robotics Research—in WAFR’16 special issue, 2018.

5. L. Takayama, D. Dooley, and W. Ju, “Expressing Thought: Improving Robot Readability
with Animation Principles,” in Proceedings of the International Conference on Human-
Robot Interaction (HRI’11), Lausanne, Switzerland, Mar. 2011, pp. 69–76.

6. A. D. Dragan, “Robot Planning with Mathematical Models of Human State and Action,”
arXiv preprint arXiv:1705.04226, 2017.

7. R. A. Knepper, C. I. Mavrogiannis, J. Proft, and C. Liang, “Implicit Communication in a
Joint Action,” in Proceedings of the International Conference on Human-Robot Interaction
(HRI’17), Vienna, Austria, Mar. 2017, pp. 283–292.

8. S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.
9. P. Masters and S. Sardina, “Deceptive Path-Planning,” in Proceedings of the International

Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug. 2017, pp. 4368–4375.
10. A. D. Dragan, R. Holladay, and S. S. Srinivasa, “Deceptive Robot Motion: Synthesis, Anal-

ysis and Experiments,” Autonomous Robots, vol. 39, no. 3, pp. 331–345, Oct. 2015.
11. Y.-C. Wu, V. Raman, S. Lafortune, and S. A. Seshia, “Obfuscator synthesis for privacy and

utility,” in NASA Formal Methods Symposium. Springer, 2016, pp. 133–149.
12. F. Z. Saberifar, S. Ghasemlou, D. A. Shell, and J. M. O’Kane, “Toward a language-theoretic

foundation for planning and filtering,” Intern. J. of Robotics Research—in WAFR’16 special
issue, 2018.

13. J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

https://nakedsecurity.sophos.com/2017/07/26/

	 Finding plans subject to stipulations on what information they divulge

