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Abstract. Genetic improvement (GI) uses automated search to find
improved versions of existing software. While most GI work use genetic
programming (GP) as the underlying search process, focus is usually
given to the target software only. As a result, specifics of GP algorithms
for GI are not well understood and rarely compared to one another.
In this work, we propose a robust experimental protocol to compare
different GI search processes and investigate several variants of GP- and
random-based approaches. Through repeated experiments, we report a
comparative analysis of these approaches, using one of the previously
used GI scenarios: improvement of runtime of the MiniSAT satisfiability
solver. We conclude that the test suites used have the most significant
impact on the GI results. Both random and GP-based approaches are
able to find improved software, even though the percentage of viable
software variants is significantly smaller in the random case (14.5% vs.
80.1%). We also report that GI produces MiniSAT variants up to twice
as fast as the original on sets of previously unseen instances from the
same application domain.

Keywords: Genetic improvement (GI) · Genetic programming (GP) · Search-
based software engineering (SBSE) · Boolean satisfiability (SAT)

1 Introduction

Genetic improvement (GI) [11, 19] uses automated search to find improved ver-
sions of existing software. GI literature focuses on both improvement of func-
tional properties, such as automated bug repair or introduction of new function-
ality, as well as improvement of non-functional properties such as running time,
or memory or energy consumption.

Genetic programming (GP) has been used most often so far as the GI search
process [11]. Even though previous work use GP as a theoretic common frame-
work, most of it implements or uses very specific variants and parameter values
for the GP algorithms that led to evolution of improved software. In order to
shift the focus from the target software to the GI process itself, so it can be
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better understood, it becomes increasingly necessary to be able to compare and
analyse all these proposed search processes.

In this paper, we aim to provide insights on how to compare GI approaches
and improve the protocol for applying GI techniques. We consider an existing
non-functional improvement GI scenario used in previous work [3, 12, 13], the
improvement of the running time of MiniSAT [4] on combinatorial interaction
testing instances, and a diverse range of various GP-based and random-based
search processes. We consider the following research questions:

RQ1 (Effectiveness): How often are noticeable improvements found?
RQ2 (Efficiency): How significant are the improvements found?
RQ3 (Robustness): How critical are the GP parameter values for GI?
RQ4 (Consistency): What is the impact of test cases on the results of GI?

This paper is structured as follows. First, Section 2 provides the necessary
GI background. Next, Section 3 presents the GP structure that will be used in
the experiments. Section 4 then describes the experimental protocol and which
specific GI search processes are compared. Experimental results are presented
and discussed in Section 5. Finally, Section 6 concludes this paper.

2 Genetic Improvement (GI)

Genetic improvement (GI) uses automated search to find improved versions of
existing software. In this section, we detail on how the software to be improved
will be represented, how it will be modified, and how mutant fitness is assessed.
In addition to the related work mentioned in this section see [11] for a more
comprehensive survey of GI work.

2.1 Software Representations

This work focuses, as a lot of previous work [11], on processing software source
code based on its underlying abstract syntax tree (AST). The main advantage of
producing mutated source code, in contrast to, for example, producing mutated
binary code [15], is that source code mutations and, in particular, patches can
be expected to be much more easily understood and thus accepted by software
developers [17].

Source Code Representation. Implementation-wise, this paper uses the lat-
est version of the PyGGI1 framework, and in particular its XML tree represen-
tation introduced in [1]. SrcML2 is used to obtain an XML tree for the AST of
the original source code file, which is then stripped down to only consider state-
ments inside functions. No specific instrumentation is performed; the only source
code modification applied is the addition of explicit brackets around pseudo

1 https://github.com/coinse/pyggi
2 https://www.srcml.org/

https://github.com/coinse/pyggi
https://www.srcml.org/
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blocks (e.g., if statements containing a single line statement with no surrounding
bracket) so that modifications of the AST are correctly translated back when gen-
erating the modified source code. A successful alternative to AST-based repre-
sentations is BNF grammar-based representation (e.g., GISMOE [3,6,7,12–14]).

Mutants Representation. In contrast to the earliest GI work [2], in which
populations of entire programs were evolved, most GI work nowadays consider
intermediary representations for mutants, focusing on the changes that are ap-
plied to the original software. In this paper, the possible changes (or edits)
considered are deletions, replacements, and insertions, relatively to any sub-tree
of the original software AST. Mutants are then simply represented as a sequence
of edits, only translated into source code and compiled for fitness assessment.

2.2 Fitness Assessment

The non-functional software property to be optimised is computational speed of
software, in particular, its average running time. For all purposes, the original
software will be considered already functionally correct and the correctness of
mutants will be assessed in comparison with the original software execution (e.g.,
by providing the same output). Non-functional mutant will be discarded imme-
diately. Previous work have shown that considering a multi-objective approach
and using degree of functionality as another objective is a viable alternative that
can sometimes even lead to a semantic gain [7].

Running time can be an extremely unreliable property to measure precisely,
strongly impacted by the environment, with good measurements only achievable
after a sufficient number of repetitions. As a proxy measure, previous work used,
for example, the number of lines of code executed by the software (e.g., [11]).
Major drawbacks include heavy source code instrumentation, same weight given
to every statement, omission of impact of standard or external libraries, and an
arguably strong impact of the compiler optimisation procedure. Instead, we pro-
pose to use the total number of executed CPU instructions as reported through
the perf UNIX kernel monitoring tool3. While the number of CPU instruc-
tions still does not provide a deterministic measure [16], preliminary results have
shown it to be well correlated with running time and several orders of magnitude
more stable even when executing experiments in parallel on a single machine.

3 Genetic Programming (GP)

Since the inception of genetic improvement (GI), many variants of genetic pro-
gramming (GP) have been successfully applied to the task of improving existing
software. In this work, we focus on and extend a GP structure that has been
used in recent non-functional GI work [7, 12, 13], and particularly has already
been used on the specific software improvement scenario that we will consider.

3 https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page
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This structure is detailed in Figure 1. It considers a fixed size population of n
individuals that it will evolve until the training budget is exhausted. Individuals
of the first generation are generated by considering a single random mutation
of the original source code. Then, for all subsequent generations, offspring are
generated in five successive steps.

Selection. The fittest individuals of the previous population are selected as par-
ents. In this paper, selection simply amounts to discarding invalid mutants
and sorting the remaining individuals according to their fitness.

Elitism. The best pe parents are simply added back untouched to better ensure
gene transmission.

Crossover. The best pc parents are considered successively and crossed with
another parent picked uniformly at random to produce a single offspring.
GP crossovers in the GI literature include concatenation (e.g., in [7,12,13]),
1-point crossover (e.g., in [5, 10,18]), or uniform crossover (e.g., in [9]).

Mutation. The first pm best parents are considered successively again and
mutated once. The most common mutations include either removing an edit
from the edit sequence, selected uniformly at random, or appending a new
edit at the end of the edit sequence.

Regrow. Finally, if not enough offspring have been generated (e.g., if the pre-
vious generation could not yield enough valid parents) then new individuals
are generated at random with a single mutation.

This structure differs from the previous one by two major points: it includes
an elitism step and enables explicit parameterisation. In the previous work up
to n/2 parents were selected, and each of them had two offspring, one through
crossover and one through mutation, with the risk of completely discarding the
genetic material of a parent when both offspring are unsuccessful. In the worst
case, the entire population can be decimated in a single population only to
restart evolution from scratch [7]. The elitism step tries to alleviate this issue by
providing a way to safely carry the best mutations over to the next generation.

4 Experimental Setup

In this section, we present the GI scenario—i.e., the target software to be im-
proved, MiniSAT [4], together with the application scenario, combinatorial in-
teraction testing instances—, clarify implementation specifics such as how the
source code of MiniSAT is represented, how it will be modified, and how perfor-
mance is assessed, before finally detailing the experimental protocol.

4.1 MiniSAT

This paper targets the automatic improvement of MiniSAT [4], a well-known
Boolean satisfiability (SAT) solver. MiniSAT is open-source and can be down-
loaded online4. It has been used several times in previous GI work, such as
in [1, 3, 12–14].

4 http://minisat.se/MiniSat.html

http://minisat.se/MiniSat.html
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. n: population size

. pe, pc, pm: number of parents selected for elitism, crossover, mutation
procedure GP(n, pe, pc, pm)

. Initial generation, generated at random
pop ← [ ]
while |pop| < n do

mutant ← new mutant
append mutant to pop

end while
. Subsequent generations
repeat

offspring ← [ ]
. (1) Selection (here: filter and sort)
parents ← selection(pop)
. (2) Offspring by elitism
for all parent ∈ parents[0 . . . ke] do

append parent to offspring
end for
. (3) Offspring by crossover
for all parent1 ∈ parents[0 . . . kc] do

parent2 ← individual from parents (uniformly at random)
mutant ← crossover(parent1 , parent2 ) or crossover(parent2 , parent1 )
append mutant to offspring

end for
. (4) Offspring by mutation
for all parent ∈ parents[0 . . . km] do

mutant ← mutation(parent1 )
append mutant to offspring

end for
. (5) If not enough parents: fill with random mutants
while |offspring | < n do

mutant ← new mutant
append mutant to offspring

end while
pop ← offspring

until training budget exhausted
return overall best mutant ever evaluated

end procedure

Fig. 1: Genetic programming search

Two versions of MiniSAT were previously considered, minisat2-070721 and
minisat-2.2.0, based on the winning entries of SAT-Race 2006 and 2009, re-
spectively. We used the latest version and focus on a single file, core/Solver.cc,
which contains the code pertaining to the search process.

As input, we use combinatorial interaction testing (CIT) instances, a GI
scenario proposed in [12] and reused in later work. In particular, we use the
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130 instances described in [13], split following the 5 “bins” according to their
satisfiability (SAT or UNSAT) and the time taken by MiniSAT to solve them5.

4.2 Experimental Protocol

The purpose of GI is to obtain, from a given software, a better software, in terms
of either functional or non-functional property. In previous work, especially in
the case of automated bug fixing, only one test suite was often used, leading
frequently to overfitting, as pointed out in [8]. For that reason, it is necessary
to split data into at least two disjoint sets of inputs in order to properly con-
trol for generalisation, which has been done in the non-functional work to-date.
Additionally, previous GI work [7, 11] has shown that, especially using GP and
edit list as representation for the mutated software, an intermediary filtering
step was extremely useful to reduce bloat, focus on fewer edits, and improve
generalisation. Our experimental protocol thus consists of the following steps:

Pre-processing. The set of inputs is disjointly split between training, valida-
tion, and test inputs. When considering multiple bins of input, all of them
are split independently and then interwoven so that each of the training,
validation, and test input sets also contains the same number of sub-bins,
thus ensuring that they all follow the same distribution of bins as the entire
set of inputs.

Training. Training is the main, most important, and most computationally ex-
pensive part of the experimental protocol. Starting from an initially empty
mutant, the search process (e.g., GP) produces incrementally better individ-
uals, before returning a single mutated software when the training budget is
exhausted. The final training mutant can, for example, be the best individ-
ual of the last GP generation, or the best overall mutant for random search.
No new software modification is to be investigated beyond this point.

Validation. The final training mutant very often overfits to the training data.
The validation steps tries, by considering previously unseen input, to filter
out mutations that do not seem to generalise. This step also allows for a
simpler and more understandable software to be returned.

Test. Again, new unseen data is used to reassess the performance of the final
validated mutant. It is extremely important that the final software is not
modified: any decision or analysis process, including singling out individual
mutations, should have been performed during the validation process.
Additionally, we also reassess the performance of the final training mutant
to control the impact of the filtering performed during the validation step.

Additionally, to select the training, validation, and test sets, we propose to
use a repeated procedure based on nested k-fold cross-validation. This proce-
dure, illustrated in Figure 2, ensures a fair usage of every instance across the

5 Fastest SAT instances, fastest UNSAT instances, SAT instances, UNSAT instances,
and slowest (both SAT or UNSAT) instances. Respective bin sizes: 50, 37, 17, 18, 8.
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Fig. 2: Example of nested 5-fold cross validation using a single fold for test (X)
and k − 1 folds for both validation (V: single random fold from the remaining
k − 1 folds) and training (T: all remaining k − 2 folds). Each of the five folds is
successively used once for the test step (X).

multiple steps and control the consistency of the GI process. Firstly, inputs (in-
dependently for each bin) are shuffled and split into k disjoint subsets (or folds).
For k successive sets of experiments, each of the k folds is successively used dur-
ing the test step, leaving k − 1 folds for both training and validation. Within
these k − 1 folds, one is picked uniformly at random for the validation subset,
leaving the last k − 2 for the training subset. In the experiments, we use k = 5,
thus five sets of experiments will be conducted, each using 60% of each bin of
inputs in the training step, 20% in the validation step, and 20% in the test step.

Note that while the validation and test steps will use every single of their
respective instances, search processes will not necessarily use all the training
instances during the training step. For example, previous GI work using GP
advocated sampling a single instance from each bin before every generation [7],
while for random search we will simply use a fixed subset of instances. The reason
is the computational cost of evaluating software on all instances: impractical and
inefficient for each and every mutant generated during training, but necessary
to reliably assess performance in the two other much shorter steps. Finally,
so that multiple approaches can be fairly compared, it is critical that every
search process, disregarding their specific instance usage strategy, is given equal
opportunity to all training instances: in no circumstance should the training set
be tailored to a specific search process.

4.3 Search Processes

A total of eight GP search processes are compared, together with a baseline con-
stituted of four random searches. The GP search processes follow the structure
introduced in Figure 1, with four different population sizes n ∈ {10, 20, 50, 100}
for a total budget of 2000 mutant evaluations. Half of them will use the elitism
mechanism with pe = 0.1 · n and pc = pm = 0.45 · n, carrying the best 10%
individuals to the next population6, while the other half will follow previous
work with pe = 0 and pc = pm = 0.5 · n. These very small populations sizes are
justified by the large amount of computational time used for fitness computa-
tion; the successful use of a population of n = 10 is corroborated in [7] while

6 After rounding, we use {pe, pc, pm} = {1, 5, 4}, {2, 9, 9}, {5, 23, 22}, and {10, 45, 45}
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n = 100 is used, for example, in [13]. Furthermore, we deviate from previous
work using a similar GP structure with a concatenation crossover in favour of a
1-point crossover, preliminary experiments having shown that the former gener-
ates unreasonable and unsustainable amount of bloat, especially with very small
populations (thus at equal training budget, more generations).

In addition to these eight GP search processes, four random searches are
included as a baseline, in which new individuals are simply generated indepen-
dently and uniformly at random and the final mutant is the one with overall best
fitness. These random searches are parameterised with the maximum number m
of edits that are generated for each new mutant. We consider m = 1 (i.e., each
mutant contains a single random edit), and m = 2, 5, 10 to enable generating
more complex mutants.

The only difference between the two types of search processes is the number
of training instances used and therefore the subsequent training budget. On the
one hand, to compute fitness GP will use as in previous work five instances that
are resampled at the start of every generation (a single instance from each bin). It
arguably implies an initial very unreliable fitness in terms of both functional and
non-functional properties, but the evolutionary process ensures that the longer a
mutation lives in the population, the more instances it has been trained on and
thus increasing reliability. On the other hand, fitness in random search cannot
rely on subsequent evaluations so instead more instances are used: twenty in
total, four instances from each bin. As a direct consequence, to keep the overall
same number of software execution and ensure fair comparison, the training
budget is reduced to 500 mutant evaluations, one forth of the GP training budget.

In the experiments the four approaches using GP without elitism will be
referred to as GP (n), with GPe(n) used for the four approaches using GP with
elitism and Rand(m) for the four random-based approaches.

4.4 Filtering

Two successive filtering procedures are applied during the validation step. The
first filtering is based on the assumption that GP-based search may produce a
large amount of bloat. Every edit is successively removed from the edit sequence
and discarded if its omission has no impact on the mutated source code. More
precisely, this filtering targets patterns in which, for example, a single statement
is deleted multiple times, modified, then deleted. It is usually very cheap as it
does not require any fitness computation, but has, however, no impact on the
mutant performance.

The second filtering (from [13]) aims to improve generalisation by discarding
edits that fail to generalise on previously unseen instances. The fitness of every
edit is first computed independently, then edits are sorted by fitness, and the
final mutant is constructed by adding edits one at a time if their addition has a
positive impact. This process consumes at most twice as many fitness evaluations
as the size of the edit sequence. This specific filtering works best when edits are
independent.
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Fig. 3: Distribution of evaluation outcomes for random- and GP-based ap-
proaches

5 Results and Discussion

Training and validation step were conducted in parallel on four cores of a dedi-
cated (8× 3.4GHz, 16GB RAM) Intel i7-2600 machine, running CentOS-7 with
Linux kernel 3.10.0 and GCC 4.8.5. The testing step was conducted sequentially
on a single core.

5.1 Overall Training Results

The 40 GP training runs required between 7 to 13 hours to complete, with an
average of 10 hours. The four random-based approaches required between 30
minutes to 5 hours, with an average of about 2 hours. Variance in training time
can be explained by instances with different processing time being sampled.

Figure 3 shows the distribution of outcome of every mutant during the train-
ing step, separated between random search and GP, together with the empirical
cumulative distribution function (ECDF), i.e., the fraction of the successful mu-
tants better than a given fitness. Because fitness values are computed using dif-
ferent instances they are normalised and indicated as a ratio with the fitness of
the original software on the same instances. Random-based approaches generated
10000 mutants, with only 14.5% of them viable and very few with a noticeable
impact. 72% failed to compile, and the remaining 13.5% either crashed, stalled,
or produced an incorrect satisfiability output. GP-based approaches generated
80000 mutants, within which only 14.3% failed to compile while 80.1% were suc-
cessful, with a very large fraction of them reporting large improvements over
the original software. This indicates that a very high efficiency for the 1-point
crossover for combining existing mutations and generating valuable mutants.
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Table 1: Experimental results for all variants (first split).

Training Validation Test

Search Size CPU Size’ CPU Size? CPU? CPU Time CPU? Time?

GP (10) 16 99.9% 11 99.9% 7 99.9% 99.9% 99.2% 99.9% 100.4%
GP (20) 32 92.7% 12 123.4% 5 93.5% 40.5% 52.7% 67.4% 76.1%
GP (50) 23 69.6% 11 102.6% 3 99.4% 77.7% 91.3% 99.6% 98.8%
GP (100) 16 63.8% 13 111.3% 4 99.9% 87.7% 100.3% 99.9% 100.6%
GPe(10) 1304 33.5% 26 114.4% 13 90.8% 44.1% 50.5% 62.8% 70.6%
GPe(20) 268 57.7% 21 105.5% 4 91.0% 43.7% 57.1% 63.0% 71.1%
GPe(50) 15 78.2% 7 123.6% 5 96.7% 80.0% 87.9% 98.5% 99.6%
GPe(100) 6 64.8% 6 107.1% 2 100.0% 36.2% 45.7% 100.0% 99.3%
Rand(1) 1 66.5% 1 114.0% 0 – 89.2% 101.4% – –
Rand(2) 2 67.0% 2 114.5% 0 – 89.7% 102.5% – –
Rand(5) 1 75.0% 1 109.0% 0 – 60.5% 66.9% – –
Rand(10) 2 74.9% 2 107.2% 1 100.0% 63.3% 66.3% 100.0% 99.3%

Size, Size’, Size?: patch size (number of edits) of the final training mutant, of the
cleaned-up mutant, and of the final validation mutant.

CPU, CPU? (Time, Time?): percentage of CPU instructions (running time) of
the final training and validation mutant, compared to the unmodified software.

5.2 Comparison of Approaches

Table 1 to Table 5 respectively report on the performance of the twelve ap-
proaches over the five repetitions and splits of instances. For each approach we
first report, for the training step, the size and fitness estimate of the final training
mutant. Then, for the validation step we report the cleaned-up size of the final
training mutant and its fitness, and the size and fitness after filtering. Finally,
for the test step, we report, for both the final training mutant and the final
validation mutant, the fitness in terms of both the number of CPU instructions
and the actual running time. Again, fitness values are indicated as a ratio of the
fitness with the original software on the same instances. An illustration of the
relationships between these results is presented in Figure 4.

Firstly, while the results are mostly consistent within a single instance split,
they greatly differ from one split to another. Furthermore, the instance sets of
the validation and the test steps induce extremely different results, albeit being
from identical size and sampled from the same distribution. This difference in
results points towards a high heterogeneity in the data set, easily explained by
the small number of SAT instances used (only 130 CIT instances).

The results do not show any noticeable impact on neither the size of the
population nor the use of elitism on the performance of the GI process. While
a statistical analysis using a considerably larger amount of GI runs for each
approach might yield better insight on the impact of GP parameters, significant
difference in performance within the selected parameter values is unlikely. The
four random-based approaches also show no significant difference in performance.
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Table 2: Experimental results for all variants (second split).

Training Validation Test

Search Size CPU Size CPU Size? CPU? CPU Time CPU? Time?

GP (10) 71 38.6% 27 155.3% 3 93.6% 127.1% 135.8% 88.0% 88.2%
GP (20) 40 20.0% 13 117.7% 6 99.7% 98.5% 113.4% 99.6% 99.7%
GP (50) 16 54.9% 13 165.7% 5 99.9% 151.9% 205.6% 100.0% 100.1%
GP (100) 5 55.6% 5 136.6% 1 100.0% 126.4% 154.0% 100.0% 99.8%
GPe(10) 45 38.6% 29 100.7% 2 100.0% 90.9% 91.5% 100.0% 99.8%
GPe(20) 62 15.7% 19 117.7% 7 100.0% 102.9% 119.8% 100.0% 99.7%
GPe(50) 31 44.2% 12 118.8% 5 99.7% 97.8% 112.7% 99.7% 99.6%
GPe(100) 19 49.9% 12 123.8% 3 93.4% 90.7% 105.5% 81.2% 84.6%
Rand(1) 1 48.3% 1 151.1% 0 – 114.9% 123.0% – –
Rand(2) 2 44.4% 2 107.9% 1 100.0% 105.1% 106.8% 100.0% 99.7%
Rand(5) 2 70.2% 2 108.0% 1 100.0% 89.9% 86.8% 100.0% 100.5%
Rand(10) 1 51.8% 1 107.4% 0 – 91.9% 96.1% – –

Table 3: Experimental results for all variants (third split).

Training Validation Test

Search Size CPU Size CPU Size? CPU? CPU Time CPU? Time?

GP (10) 28 69.4% 9 102.5% 6 99.8% 76.5% 76.0% 99.7% 100.8%
GP (20) 63 86.7% 10 107.7% 6 100.0% 130.2% 138.0% 100.0% 99.8%
GP (50) 7 26.2% 7 151.1% 1 100.0% 74.9% 71.6% 100.0% 100.3%
GP (100) 8 60.8% 6 109.3% 1 100.0% 62.9% 64.1% 100.0% 98.4%
GPe(10) 19 69.3% 5 93.2% 3 100.0% 98.5% 98.2% 100.0% 99.5%
GPe(20) 1 100.0% 1 100.0% 1 100.0% 100.0% 100.4% 100.0% 99.4%
GPe(50) 21 25.7% 9 111.2% 3 100.0% 102.2% 113.2% 100.0% 100.8%
GPe(100) 5 48.2% 5 109.2% 2 93.6% 76.3% 74.6% 76.3% 74.7%
Rand(1) 1 64.9% 1 107.7% 0 – 50.1% 49.0% – –
Rand(2) 1 65.7% 1 118.1% 0 – 100.3% 108.4% – –
Rand(5) 2 52.2% 2 107.9% 1 100.0% 86.9% 89.0% 100.0% 100.3%
Rand(10) 3 69.0% 3 98.8% 2 98.8% 104.3% 105.3% 104.3% 106.9%

Focusing on the very first set of experiments (Table 1), most of GP-based and
random-based approaches report final mutants using around 70% of the number
of CPU instructions executed compared to the original software, with the best
mutant reporting using only as much as 33.5%. Mutants generated by GP ap-
proaches used between 6 and 26 edits, with the best mutants of random-based
approaches containing only a single or two edits. The training performance of
all mutants failed to generalise to the set of validation instances, with only three
mutants surviving the filtering process with more that 5% fitness improvement.
All three mutants did then further generalise on the final test set of instances,
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Table 4: Experimental results for all variants (fourth split).

Training Validation Test

Search Size CPU Size CPU Size? CPU? CPU Time CPU? Time?

GP (10) 26 93.8% 9 91.6% 6 91.6% 126.9% 121.4% 126.9% 121.1%
GP (20) 54 22.2% 13 55.0% 6 50.2% 126.3% 129.7% 124.7% 128.2%
GP (50) 9 82.8% 7 91.0% 6 54.0% 126.0% 120.7% 115.8% 111.8%
GP (100) 7 57.8% 5 75.4% 3 75.4% 92.0% 91.8% 92.0% 91.7%
GPe(10) 2 99.8% 2 99.9% 2 99.9% 99.8% 101.0% 99.8% 101.1%
GPe(20) 49 22.2% 9 54.9% 8 49.8% 126.2% 127.7% 123.8% 124.9%
GPe(50) 6 82.8% 6 99.7% 4 99.7% 130.6% 135.6% 130.6% 134.6%
GPe(100) 10 48.9% 9 119.6% 5 50.1% 111.2% 118.1% 124.7% 127.8%
Rand(1) 1 57.4% 1 77.2% 1 77.2% 122.8% 115.6% 122.8% 114.8%
Rand(2) 1 77.1% 1 75.4% 1 75.4% 92.0% 90.9% 92.0% 92.1%
Rand(5) 3 57.7% 3 99.9% 1 99.8% 96.4% 98.3% 96.1% 99.2%
Rand(10) 1 77.1% 1 75.4% 1 75.4% 92.0% 91.2% 92.0% 91.1%

Table 5: Experimental results for all variants (fifth split).

Training Validation Test

Search Size CPU Size CPU Size? CPU? CPU Time CPU? Time?

GP (10) 0 100.0% − − − − − − − −
GP (20) 36 21.6% 16 105.6% 4 75.1% timeout timeout 97.1% 96.9%
GP (50) 6 83.9% 5 91.5% 3 53.5% 89.0% 81.7% 119.8% 115.0%
GP (100) 4 54.7% 4 130.1% 1 100.0% 109.1% 108.8% 100.0% 99.4%
GPe(10) 0 100.0% − − − − − − − −
GPe(20) 88 29.6% 15 53.2% 11 53.2% 119.2% 116.6% 119.2% 116.5%
GPe(50) 14 79.1% 9 54.1% 4 49.2% 73.5% 74.3% 98.6% 103.3%
GPe(100) 20 55.1% 12 57.6% 5 53.4% 103.4% 99.9% 119.8% 116.8%
Rand(1) 1 65.4% 1 74.9% 1 74.9% 98.4% 96.4% 98.4% 98.9%
Rand(2) 1 65.4% 1 74.9% 1 74.9% 98.4% 96.7% 98.4% 96.8%
Rand(5) 1 65.6% 1 75.0% 1 75.0% 98.6% 95.7% 98.6% 95.5%
Rand(10) 1 69.8% 1 75.3% 1 75.3% 97.3% 94.6% 97.3% 95.6%

with a final improvement of 25% to 30% in running time. However, many unfil-
tered mutants, albeit slower on the validation set, showed on the test set much
larger improvements in both number of CPU instructions and running time.

For this first split of instances, it appears that mutants generalised to the test
instances but not the validation instances. The same situation occurs in Table 3,
while Table 4 and Table 5 show the inverse to be true. Finally, on the three cases
(first three folds) in which the validation step is able to catch overfitting on the
training step, it efficiently is able to fix it on the test step.
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Fig. 4: Results correlations after the training, validation, and test steps

5.3 Comparative Analysis

Figure 4 illustrates various relationships between mutant performance at differ-
ent points of the experiments. Dashed lines highlight 100% thresholds and the
identity function (x = y). Data points are simply denoted by the index of the
fold they used in the test step.

Figure 4 (a) shows the overfitting of the final training mutants on the vali-
dation set of instances. As expected, almost every single mutant overfits on the
training set, with roughly half of the mutants using more CPU instructions than
the original software on the previously unseen validation instances.

Figure 4 (b) should ideally show very correlated results, as performance
should be similar on both validation and test sets of instances, both unseen
and following the same distribution. Instead, it highlights a previous conclusion:
the set of CIT instances is too small to be randomly divided in five fair subsets.

Figure 4 (c) shows the impact of the filtering step, comparing the performance
on the test step of the final training mutant and the filtered one. Unfortunately,
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filtering had in most cases either no impact or a negative impact. This is due to
validation and test sets of instances being inconsistent.

Figure 4 (d), finally, shows the clear correlation between performance in
terms of the number of CPU instructions executed and the running time. This,
together with the very high stability of CPU instructions readings even in parallel
contexts, confirms it as an excellent measure of computational speed.

5.4 Research Questions

RQ1 (Effectiveness): How often are noticeable improvements found?
In all but five GI runs improvements from 5% to 79% in the number of CPU
instructions were found on training instances. In slightly more than half of
the runs some of the mutations had a noticeable (> 5%) impact during either
the validation or the test step. However, considering only the performance
on the filtered mutants, only nine GI runs had a noticeable positive impact
during the test step. Seven of these GI runs used a GP search process, while
the two other used random search.

RQ2 (Efficiency): How significant are the improvements found?
The improvements of the nine most successful GI runs vary between 8%
and 37% in terms of the number of CPU instructions, and between 8% and
30% in terms of running time. Furthermore, among the many results with
significant (> 5%) improvements on unseen instances (validation and test)
about two-thirds show improvements of at least 25%.

RQ3 (Robustness): How critical are the GP parameter values?
No particular impact of parameter values is noticed for neither GP-based
approaches nor random-based approaches. While more GI runs based on
GP ultimately produced significant improvements, performance of GP-based
approaches was similar to the performance of random-based approaches. This
could be partly attributed to the data set heterogeneity.

RQ4 (Consistency): What is the impact of test cases on the results of GI?
As clearly demonstrated in the experiments, results are strongly impacted
by the way instances are split. The same final mutant trained on 60% of
the instances can be reported as 50% faster on 20% of previously unseen
instances while being at the same time 25% slower of the remaining 20% of
equally unseen instances. As a consequence, it is highly recommended for
future GI work to report repeated performance using multiple data splits,
following, for example, the experimental protocol described in this paper.
Failure to do so might result in overlooking major weaknesses in the dataset
and highly overestimated final software performance.

6 Conclusions

This paper presented and compared several GP approaches for a GI scenario in
which a Boolean satisfiability solver, MiniSAT, was evolved to optimise running
time on combinatorial interaction testing instances. Number of CPU instructions
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was proposed as an alternative to source code instrumentation and was shown
to be a reliable indicator of computational speed. Following a protocol based on
repeated experiments, it showed that performance of GI processes was highly
impacted by heterogeneity in the data set. While the training steps resulted
in a very high number of mutants with excellent performance on either of the
validation or test steps, very few of them had a significant impact after the
complete GI process. Overall, GP approaches are mostly indistinguishable from
one another and yet more efficient and effective than random search, suggesting
that more consistent and reliable approaches are yet to be proposed.

The proposed protocol, with repeated experiments and disjoint validation
and test sets, shows the potential for obtaining even better results than in pre-
vious work. Moreover, it shows that the largest impact on the performance lies
in the set of test suites used, which requires further investigation in future work.
Regardless, even in the simplest random search case, improvements can be found.
However, the question of which is the most efficient and effective search process
in GI remains open with this work being the first step towards answering that
question.
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