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Abstract. Let A/Fp and A′/Fp be superspecial principally polarized
abelian varieties of dimension g > 1. For any prime ℓ 6= p, we give an
algorithm that finds a path φ : A → A′ in the (ℓ, . . . , ℓ)-isogeny graph

in Õ(pg−1) group operations on a classical computer, and Õ(
√
pg−1)

calls to the Grover oracle on a quantum computer. The idea is to find
paths from A and A′ to nodes that correspond to products of lower
dimensional abelian varieties, and to recurse down in dimension until an
elliptic path-finding algorithm (such as Delfs–Galbraith) can be invoked
to connect the paths in dimension g = 1. In the general case where A and
A′ are any two nodes in the graph, this algorithm presents an asymptotic
improvement over all of the algorithms in the current literature. In the
special case where A and A′ are a known and relatively small number of
steps away from each other (as is the case in higher dimensional analogues
of SIDH), it gives an asymptotic improvement over the quantum claw
finding algorithms and an asymptotic improvement over the classical van
Oorschot–Wiener algorithm.

1 Introduction

Isogenies of supersingular elliptic curves are now well-established in cryptogra-
phy, from the Charles–Goren–Lauter hash function [10] to Jao and De Feo’s
SIDH key exchange [27] and beyond [2,21,12,13]. While the security of isogeny-
based cryptosystems depend on the difficulty of a range of computational prob-
lems, the fundamental one is the isogeny problem: given supersingular elliptic
curves E1 and E2 over Fp2 , find a walk in the ℓ-isogeny graph connecting them.

One intriguing aspect of isogeny-based cryptography is the transfer of elliptic-
curve techniques from classic discrete-log-based cryptography into the post-
quantum arena. In this spirit, it is natural to consider cryptosystems based
on isogeny graphs of higher-dimensional abelian varieties, mirroring the transi-
tion from elliptic (ECC) to hyperelliptic-curve cryptography (HECC). Compared
with elliptic supersingular isogeny graphs, the higher-dimensional graphs have
more vertices and higher degrees for a given p, which allows some interesting
tradeoffs (for example: in dimension g = 2, we get the same number of vertices
with a p of one-third the bitlength).

http://arxiv.org/abs/1912.00701v2
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For g = 2, Takashima [36] and Castryck, Decru, and Smith [7] have defined
CGL-style hash functions, while Costello [11] and Flynn and Ti [19] have already
proposed SIDH-like key exchanges. Generalizations to dimensions g > 2, using
isogeny algorithms such as those in [4], are easy to anticipate; for example, a
family of hash functions on isogeny graphs of superspecial abelian varieties with
real multiplication was hinted at in [9].

So far, when estimating security levels, these generalizations assume that
the higher-dimensional supersingular isogeny problem is basically as hard as the
elliptic supersingular isogeny problem in graphs of the same size. In this article,
we show that this assumption is false. The general supersingular isogeny problem
can be partially reduced to a series of lower-dimensional isogeny problems, and
thus recursively to a series of elliptic isogeny problems.

Theorem 1. There exists a classical algorithm which, given a prime ℓ and su-
perspecial abelian varieties A1 and A2 of dimension g over Fp with p 6= ℓ, suc-
ceeds with probability ≥ 1/2g−1 in computing a composition of (ℓ, . . . , ℓ)-isogenies

from A1 to A2, running in expected time Õ((pg−1/P )) on P processors as p→ ∞
(with ℓ fixed).

Given that these graphs have O(pg(g+1)/2) vertices, the expected runtime

for generic random-walk algorithms is Õ(pg(g+1)/4/P ). Our algorithm therefore
represents a substantial speedup, with nontrivial consequences for cryptographic
parameter selection.3 We also see an improvement in quantum algorithms:

Theorem 2. There exists a quantum algorithm which, given a prime ℓ and
superspecial abelian varieties A1 and A2 of dimension g over Fp with p 6= ℓ,
computes a composition of (ℓ, . . . , ℓ)-isogenies from A1 to A2 running in expected

time Õ(
√
pg−1) as p→ ∞ (with ℓ fixed).

This reflects the general pattern seen in the passage from ECC to HECC:
the dimension grows, the base field shrinks—-and the mathematical structures
become more complicated, which can ultimately reduce claimed security levels.
Just as index calculus attacks on discrete logarithms become more powerful in
higher genus, where useful structures appear in Jacobians [15,23,22,34], so in-
teresting structures in higher-dimensional isogeny graphs provide attacks that
become more powerful as the dimension grows. Here, the interesting structures
are (relatively large) subgraphs corresponding to increasing numbers of elliptic
factors in (polarized) abelian varieties. These subgraphs are relatively large, and
so random-walking into them is relatively easy. We can then glue together elliptic
isogenies, found with an elliptic path-finding algorithm, to form product isoge-
nies between products of elliptic curves, and thus to solve the original isogeny
problem. We will see that the path-finding problem in the superspecial graph
gets asymptotically easier as the dimension grows.

3 Our algorithms apply to the full superspecial graph; we do not claim any impact on
cryptosystems that run in small and special subgraphs, such as CSIDH [8].
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Notation and conventions. Throughout, p denotes a prime > 3, and ℓ a prime
not equal to p. Typically, p is large, and ℓ ≪ log(p) is small enough that com-
puting (ℓ, . . . , ℓ)-isogenies of g-dimensional principally polarized abelian varieties
(PPAVs) is polynomial in log(p). Similarly, we work with PPAVs in dimensions
g ≪ log p; in our asymptotics and complexities, g and ℓ are fixed. We say a
function f(X) is in Õ(g(X)) if f(X) = O(h(logX)g(X)) for some polynomial h.

2 The elliptic supersingular isogeny graph

An elliptic curve E/Fp is supersingular if E [p](Fp) = 0. We have a number of ef-
ficient algorithms for testing supersingularity: see Sutherland [35] for discussion.

Supersingularity is isomorphism-invariant, and any supersingular E has j-
invariant j(E) in Fp2 ; and in fact the curve E can be defined over Fp2 . We let

S1(p) :=
{
j(E) : E/Fp2 is supersingular

}
⊂ Fp2

be the set of isomorphism classes of supersingular elliptic curves over Fp. It is
well-known that

#S1(p) =
⌊ p
12

⌋
+ ǫp (1)

where ǫp = 0 if p ≡ 1 (mod 12), 2 if p ≡ −1 (mod 12), and 1 otherwise.
Now fix a prime ℓ 6= p, and consider the directed multigraph Γ1(ℓ; p) whose

vertex set is S1(p), and whose edges correspond to ℓ-isogenies between curves
(again, up to isomorphism). The graph Γ1(ℓ; p) is (ℓ + 1)-regular: there are (up
to isomorphism) ℓ + 1 distinct ℓ-isogenies from a supersingular elliptic curve
E/Fp2 to other elliptic curves, corresponding to the ℓ + 1 order-ℓ subgroups of

E [ℓ](Fp) ∼= (Z/ℓZ)2 that form their kernels. But since supersingularity is isogeny-
invariant, the codomain of each isogeny is again supersingular; that is, the ℓ+1
order-ℓ subgroups of E [ℓ] are in bijection with the edges out of j(E) in Γ1(ℓ; p).

Definition 1. A walk of length n in Γ1(ℓ; p) is a sequence of edges j0 → j1 →
· · · → jn. A path in Γ1(ℓ; p) is an acyclic (and, in particular, non-backtracking)
walk: that is, a walk j0 → j1 → · · · → jn such that ji = ji′ if and only if i = i′.

Pizer [32] proved that Γ1(ℓ; p) is Ramanujan: in particular, Γ1(ℓ; p) is a con-
nected expander graph, and its diameter is O(log p). We therefore expect the
end-points of short random walks from any given vertex j0 to quickly yield a
uniform distribution on S1(p). Indeed, if j0 is fixed and jn is the end-point of an
n-step random walk from j0 in Γ1(ℓ; p), then [21, Theorem 1] shows that

∣∣∣∣Pr[jn = j]− 1

#S1(p)

∣∣∣∣ ≤
(

2
√
ℓ

ℓ+ 1

)n

for all j ∈ S1(p) . (2)

The isogeny problem in Γ1(ℓ; p) is, given j0 and j in S1(p), to find a path (of
any length) from j0 to j in Γ1(ℓ; p). The difficulty of the isogeny problem under-
pins the security of the Charles–Goren–Lauter hash function (see §3 below).
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The isogeny problem is supposed to be hard. Our best generic classical path-
finding algorithms look for collisions in random walks, and run in expected time
the square root of the graph size: in this case, Õ(

√
p). In the special case of

supersingular isogeny graphs, we can make some practical improvements but
the asymptotic complexity remains the same: given j0 and j in F1(p; ℓ), we can

compute a path j0 → j in Õ(
√
p) classical operations (see [14]).

The best known quantum algorithm for path-finding [3] instead searches for
paths from j0 → j′0 and from j → j′, where j′0 and j′ are both in Fp. Of the O(p)
elements in S1(p), there are O(

√
p) elements contained in Fp; while a classical

search for elements this sparse would therefore run in time O(
√
p), Grover’s

quantum algorithm [24] completes the search in expected time O( 4
√
p). It remains

to find a path from j′0 to j′. This could be computed classically in time Õ( 4
√
p)

using the Delfs–Galbraith algorithm, but Biasse, Jao and Sankar [3] show that
a quantum computer can find paths between subfield curves in subexponential
time, yielding an overall algorithm that runs in expected time O( 4

√
p).

We can also consider the problem of finding paths of a fixed (and typically
short) length: for example, given e > 0 and j0 and j in S1(p) such that there
exists a path φ : j0 → · · · → j of length e, find φ. This problem arises in the
security analysis of SIDH, for example.

3 Cryptosystems in the elliptic supersingular graph

The Charles–Goren–Lauter hash function (CGL). Supersingular isogenies ap-
peared in cryptography with the CGL hash function, which operates in Γ1(2; p).
Fix a base point j0 in S1(p), and one of the three edges in Γ1(2; p) leading into
it: j−1 → j0, say. To hash an n-bit message m = (m0,m1, . . . ,mn−1), we let m
drive a non-backtracking walk j0 → · · · → jn on Γ1(2; p): for each 0 ≤ i < n, we
compute the two roots α0 and α1 of Φ2(ji, X)/(ji−1−X) to determine the neigh-
bours of ji that are not ji−1, numbering the roots with respect to some ordering
of Fp2 (here Φ2(Y,X) is the classical modular polynomial), and set ji+1 = αmi

.

Once we have computed the entire walk j0 → · · · → jn, we can derive a
log2 p-bit hash value H(m) from the end-point jn; we call this step finalisation.
Charles, Goren, and Lauter suggest applying a linear function f : Fp2 → Fp

to map jn to H(m) = f(jn). For example, if Fp2 = Fp(ω) then we can map
jn = jn,0 + jn,1ω (with jn,0 and jn,1 in Fp) to H(m) = ajn,0 + bjn,1 for some
fixed random choice of a and b in Fp. Heuristically, for general f , if we suppose
S1(p) is distributed uniformly in Fp2 , then roughly one in twelve elements of Fp

appear as hash values, and each of those has only one expected preimage in S1(p).

Finding a preimage for a given hash value h in Fp amounts to finding a
path j0 → · · · → j such that f(j) = h: that is, solving the isogeny problem.
We note that inverting the finalisation seems hard: for linear f : F2

p → Fp, we
know of no efficient method which given h in Fp computes a supersingular j
such that f(j) = h. (Brute force search requires O(p) trials.) Finalisation thus
gives us some protection against meet-in-the-middle isogeny algorithms. Finding
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collisions and second preimages for H amounts to finding cycles in Γ1(2; p). For
well-chosen p and j0, this is roughly as hard as the isogeny problem [10, §5].

SIDH. Jao and De Feo’s SIDH key exchange [27] begins with a supersingular
curve E0/Fp2 , where p is in the form c·2a3b−1, with fixed torsion bases 〈P2, Q2〉 =
E0[2a] and 〈P3, Q3〉 = E0[3b] (which are rational because of the special form of
p). Alice computes a secret walk φA : E0 → · · · → EA of length a in Γ1(2; p),
publishing EA, φA(P3), and φA(Q3); similarly, Bob computes a secret walk φB :
E0 → · · · → EB of length b in Γ1(3; p), publishing EB, φB(P2), and φB(Q2). The
basis images allow Alice to compute φB(kerφA), and Bob φA(kerφB); Alice can
thus “repeat” her walk starting from EB, and Bob his walk from EA, to arrive
at curves representing the same point in S1(p), which is their shared secret.

Breaking Alice’s public key amounts to solving an isogeny problem in Γ1(2; p)
subject to the constraint that the walk have length a (which is particularly short).
The 3b-torsion basis may give some useful information here, though so far this is
only exploited in attacks on artificial variants of SIDH [31]. Similarly, breaking
Bob’s public key amounts to solving a length-b isogeny problem in Γ1(3; p).
Alternatively, we can compute these short paths by computing endomorphism
rings: [20, Theorem 4.1] states that if E and E ′ are in S1(p) and we have explicit
descriptions of End(E) and End(E ′), then we can efficiently compute the shortest
path from E to E ′ in Γ1(ℓ; p) (see [29,20,17] for further details on this approach).

4 Abelian varieties and polarizations

An abelian variety is a smooth projective algebraic group variety. An isogeny of
abelian varieties is a surjective finite morphism φ : A → A′ such that φ(0A) =
0A′ . In dimension g = 1, these definitions coincide with those for elliptic curves.

The proper higher-dimensional generalization of an elliptic curve is a prin-
cipally polarized abelian variety (PPAV). A polarization of A is an isogeny

λ : A → Â, where Â ∼= Pic0(A) is the dual abelian variety; λ is principal if
it is an isomorphism. If A = E is an elliptic curve, then there is a canonical prin-
cipal polarization λ : P 7→ [(P ) − (∞)], and every other principal polarization
is isomorphic to λ (via composition with a suitable translation and automor-
phism). The Jacobian JC of a curve C also has a canonical principal polarization
defined by the theta divisor, which essentially corresponds to an embedding of
C in JC , and thus connects JC with the divisor class group of C.

We need a notion of compatibility between isogenies and principal polariza-
tions. First, recall that every isogeny φ : A → A′ has a dual isogeny φ̂ : Â′ → Â.
Now, if (A, λ) and (A′, λ′) are PPAVs, then φ : A → A′ is an isogeny of PPAVs

if φ̂ ◦ λ′ ◦ φ = [d]λ for some integer d. We then have φ† ◦ φ = [d] on A (and

φ ◦φ† = [d] on A′), where φ† := λ−1 ◦ φ̂ ◦λ′ is the Rosati dual. Intuitively, φ will
be defined by homogeneous polynomials of degree d with respect to projective
coordinate systems on A and A′ corresponding to λ and λ′, respectively. There
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is a simple criterion on subgroups S ⊂ A[d] to determine when an isogeny with
kernel S is an isogeny of PPAVs: the subgroup should be Lagrangian.4

Definition 2. Let A/Fp be a PPAV and let m be an integer prime to p. A
Lagrangian subgroup of A[m] is a maximal m-Weil isotropic subgroup of A[m].

If ℓ 6= p is prime, then A[ℓn] ∼= (Z/ℓnZ)2g for all n > 0. If S ⊂ A[ℓ] is
Lagrangian, then S ∼= (Z/ℓZ)g. Any Lagrangian subgroup of A[ℓn] is isomorphic
to (Z/ℓZ)n1 × · · · × (Z/ℓZ)ng for some n1 ≥ · · · ≥ ng with

∑
i ni = gn (though

not every (n1, . . . , ng) with
∑

i ni = gn occurs in this way).

We now have almost everything we need to generalize supersingular isogeny
graphs from elliptic curves to higher dimension. The elliptic curves will be re-
placed by PPAVs; ℓ-isogenies will be replaced by isogenies with Lagrangian ker-
nels in the ℓ-torsion—called (ℓ, . . . , ℓ)-isogenies—and the elliptic dual isogeny
will be replaced by the Rosati dual. It remains to define the right analogue of
supersingularity in higher dimension, and study the resulting graphs.

5 The superspecial isogeny graph in dimension g

We need an appropriate generalization of elliptic supersingularity to g > 1. As
explained in [7], it does not suffice to simply take the PPAVsA/Fp with A[p] = 0.

Definition 3. A PPAV A is supersingular if the Newton polygon of its Frobe-
nius endomorphism has all slopes equal to 1/2, and superspecial if Frobenius
acts as 0 on H1(A,OA). Superspecial implies supersingular; in dimension g = 1,
the definitions coincide.

All supersingular PPAVs are isogenous to a product of supersingular elliptic
curves. Superspecial abelian varieties are isomorphic to a product of supersin-
gular elliptic curves, though generally only as unpolarized abelian varieties. The
special case of Jacobians is particularly relevant for us when constructing exam-
ples: JC is superspecial if and only if the Hasse–Witt matrix of C vanishes.

It is argued in [7] that the world of superspecial (and not supersingular)
PPAVs is the correct setting for supersingular isogeny-based cryptography. We
will not repeat this argument here; but in any case, every higher-dimensional
“supersingular” cryptosystem proposed so far has in fact been superspecial.

In analogy with the elliptic supersingular graph, then, we define

Sg(p) :=
{
A : A/Fp2 is a superspecial g-dimensional PPAV

}
/ ∼= .

Our first task is to estimate the size of Sg(p).

Lemma 1. We have #Sg(p) = O(pg(g+1)/2).

4 Isogenies with strictly smaller kernels exist—isogenies with cyclic kernel are treated
algorithmically in [16]— but these isogenies are not relevant to this investigation.
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Proof. See [18, §5]. This follows from the Hashimoto–Ibukiyama mass formula

∑

A∈Sg(p)

1

#Aut(A)
=

g∏

i=1

B2i

4i
(1 + (−p)i) ,

where B2i is the 2i-th Bernoulli number. In particular, #Sg(p) is a polynomial
in p of degree

∑g
i=1 i = g(g + 1)/2. ⊓⊔

Note that #Sg(p) grows quadratically in g (and exponentially in log p): we have
#S1(p) = O(p), #S2(p) = O(p3), #S3(p) = O(p6), and #S4(p) = O(p10).

For each prime ℓ 6= p, we let Γg(ℓ; p) denote the (directed) graph on Sg(p)
whose edges are Fp-isomorphism classes of (ℓ, · · · , ℓ)-isogenies of PPAVs: that is,
isogenies whose kernels are Lagrangian subgroups of the ℓ-torsion. Superspecial-
ity is invariant under (ℓ, . . . , ℓ)-isogeny, so to determine the degree of the vertices
of Γg(ℓ; p) it suffices to enumerate the Lagrangian subgroups of a g-dimensional
PPAV. A simple counting argument yields Lemma 2.

Lemma 2. If A/Fp is a g-dimensional PPAV, then the number of Lagrangian
subgroups of A[ℓ], and hence the number of edges leaving A in Γg(ℓ; p), is

Ng(ℓ) :=

g∑

d=0

[
g

d

]

ℓ

· ℓ(
g−d+1

2 ) .

(The ℓ-binomial coefficient
[
n
k

]
ℓ
:= (n)ℓ···(n−k+1)ℓ

(k)ℓ···(1)ℓ
, where (i)ℓ := ℓi−1

ℓ−1 , counts

the k-dimensional subspaces of Fn
ℓ .) In particular, Γg(ℓ; p) is Ng(ℓ)-regular; and

Ng(ℓ) is a polynomial in ℓ of degree g(g + 1)/2.

We do not yet have analogues of Pizer’s theorem to guarantee that Γg(ℓ; p) is
Ramanujan when g > 1, though this is proven for superspecial abelian varieties
with real multiplication [26]. We therefore work on the following hypothesis:

Hypothesis 1. The graph Γg(ℓ; p) is Ramanujan.

We need Hypothesis 1 in order to obtain the following analogue of Eq. 2 (a
standard random walk theorem, as in [25, §3]): if we fix a vertex A0 and consider
n-step random walks A0 → · · · → An, then

∣∣∣∣Pr[An
∼= A]− 1

#Sg(p)

∣∣∣∣ ≤
(
2
√
Ng(ℓ)− 1

Ng(ℓ)

)n

for all A ∈ Sg(p) . (3)

That is, random walks in Γg(ℓ; p) converge exponentially quickly to the uniform
distribution: after O(log p) steps in Γg(ℓ; p) we are uniformly distributed over
Sg(p). Given specific ℓ and g, we can explicitly derive the constant hidden by
the big-O to bound the minimum n yielding a distribution within 1/#Sg(p) of
uniform.
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Remark 1. Existing proposals of higher-dimensional supersingular isogeny-based
cryptosystems all implicitly assume (special cases of) Hypothesis 1. For the
purposes of attacking their underlying hard problems, we are comfortable making
the same hypothesis. After all, if our algorithms are less effective because the
expansion properties of Γg(ℓ; p) are less than ideal, then the cryptosystems built
on Γg(ℓ; p) will fail to be effective by the same measure.

6 Superspecial cryptosystems in dimension g = 2

Before attacking the isogeny problem in Γg(ℓ; p), we consider some of the cryp-
tosystems that have recently been defined in Γ2(ℓ; p). This will also illustrate
some methods for computing in these graphs, and as well as special cases of the
general phenomena that can help us solve the isogeny problem more efficiently.
For the rest of this section, therefore, we restrict to dimension g = 2.

Every 2-dimensional PPAV is isomorphic (as a PPAV) to either the Jacobian
of a genus-2 curve, or to a product of two elliptic curves. We can therefore split
S2(p) naturally into two disjoint subsets: S2(p) = S2(p)

J ⊔ S2(p)
E , where

S2(p)
J := {A ∈ S2(p) : A ∼= JC with g(C) = 2} and

S2(p)
E := {A ∈ S2(p) : A ∼= E1 × E2 with E1, E2 ∈ S1(p)} .

Vertices in S2(p)
J are “general”, while vertices in S2(p)

E are “special”. We can
make the estimates implied by Lemma 1 more precise: if p > 5, then

#S2(p)
J =

1

2880
p3 +

1

120
p2 and #S2(p)

E =
1

288
p2 +O(p)

(see e.g. [7, Proposition 2]). In particular, #S2(p)
E/#S2(p) = 10/p+ o(1).

Takashima’s hash function. Takashima [36] was the first to generalize CGL to
g = 2. We start with a distinguished vertex A0 in S2(p), and a distinguished
incoming edge A−1 → A0 in Γ2(ℓ; p). Each message m then drives a walk in
Γ2(ℓ; p): at each vertex we have a choice of 14 forward isogenies (the 15th is the
dual of the previous, which is a prohibited backtracking step). The message m is
therefore coded in base 14. While traversing the graph, the vertices are handled
as concrete genus-2 curves representing the isomorphism classes of their Jaco-
bians. Lagrangian subgroups correspond to factorizations of the hyperelliptic
polynomials into a set of three quadratics, and the isogenies are computed using
Richelot’s formulæ (see [6, Chapters 9-10] and [33, Chapter 8]). We derive a hash
value From the final vertex An as the Igusa–Clebsch invariants of the Jacobian,
in F

3
p2 ; Takashima does not define a finalisation map (into F

3
p, for example).

Flynn and Ti observe in [19] that this hash function has a fatal weakness: it
is trivial to compute length-4 cycles starting from any vertex in Γ2(2; p), as in
Example 1. Every cycle produces infinitely many hash collisions.
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Example 1. Given some A0 in S2(p), choose a point P of order 4 on A0. There
exist Q and R in A0[2] such that e2([2]P,Q) = 1 and e2([2]P,R) = 1, but
e2(Q,R) 6= 1. The Lagrangian subgroups K0 := 〈[2]P,Q〉 and K ′

0 := 〈[2]P,R〉
of A0[2] are kernels of (2, 2)-isogenies φ0 : A0 → A1

∼= A0/K0 and φ′0 : A0 →
A′

1
∼= A0/K

′
0; and in general, A1 6∼= A′

1. Now K1 := φ0(K
′
0) and K

′
1 := φ′0(K0)

are Lagrangian subgroups of A1[2]. Writing I1 = kerφ1
† and I ′1 = ker (φ′1)

†, we
see that K1 ∩ I1 = 〈φ1(R)〉 and K ′

1 ∩ I ′1 = 〈φ1(Q)〉. We thus define another pair
of (2, 2)-isogenies, φ1 : A1 → A2

∼= A1/K1 and φ′1 : A′
1 → A′

2
∼= A′

1/K
′
1. We

have ker(φ1 ◦φ0) = ker(φ′1 ◦φ′0), so A2
∼= A′

2. Now let ψ := (φ′0)
† ◦ (φ′1)

† ◦φ1 ◦φ0.
We have ψ ∼= [4]A0

, but ψ does not factor over [2]A0
(since A1 6∼= A′

1). Hence ψ
represents a nontrivial cycle of length 4 in the graph.

The ubiquity of these length-4 cycles does not mean that Γ2(2; p) is no use for
hashing: it just means that we must use a stronger rule than backtrack-avoidance
when selecting steps in a walk. The following hash function does just this.

The Castryck–Decru–Smith hash function (CDS). Another generalization of
CGL from Γ1(2; p) to Γ2(2; p), neatly avoiding the length-4 cycles of Example 1,
is defined in [7]. Again, we fix a vertexA0 and an isogeny φ−1 : A−1 → A0; we let

I0 ⊂ A0[2] be the kernel of the Rosati dual φ†−1. Now, let m = (m0, . . . ,mn−1)
be a 3n-bit message, with each 0 ≤ mi < 8. The sequence (m0, . . . ,mn−1) drives
a path through Γ2(2; p) as follows: our starting point is A0, with its distinguished
subgroup I0 corresponding to the edge A−1 → A0. For each 0 ≤ i < n, we com-
pute the set of eight Lagrangian subgroups {Si,0, . . . , Si,7} of Ai[2] such that
Si,j ∩ Ii = 0, numbering them according to some fixed ordering on the encod-
ings of Lagrangian subgroups. Then we compute φi : Ai → Ai+1

∼= Ai/Si,mi
,

and let Ii+1 := φi(Ai[2]) = kerφi
†. Once we have computed the entire walk

A0 → · · · → An, we can derive a 3 log2 p-bit hash value H(m) from the isomor-
phism class of An (though such a finalisation is unspecified in [7]). The subgroup
intersection condition ensures that the composition of the isogenies in the walk
is a (2n, . . . , 2n)-isogeny, thus protecting us from the small cycles of Example 1.

Putting this into practice reveals an ugly technicality. As in Takashima’s
hash function, we compute with vertices as genus-2 curves, encoded by their hy-
perelliptic polynomials, with (2, 2)-isogenies computed using Richelot’s formulæ.
Walk endpoints are mapped to Igusa–Clebsch invariants in F

3
p2 . But these curves,

formulæ, and invariants only exist for vertices in S2(p)
J . We can handle vertices

in S2(p)
E as pairs of elliptic curves, with pairs of j-invariants for endpoints, and

there are explicit formulæ to compute isogenies in to and out of S2(p)
E (see

e.g. [7, §3]). Switching between representations and algorithms (to say nothing
of finalisation, where S2(p)

E would have a smaller, easily distinguishable, and
easier-to-invert image) seems like needless fiddle when the probability of stepping
onto a vertex in S2(p)

E is only O(1/p), which is negligible for cryptographic p.
In [7], this issue was swept under the rug by defining simpler algorithms which

efficiently walk in the subgraph of Γ2(2; p) supported on S2(p)
J , and simply fail if

they walk into S2(p)
E . This happens with probability O(1/p), which may seem

acceptable—however, this also means that it is exponentially easier to find a
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message where the hash fails than it is to find a preimage with a square-root
algorithm. The former requires O(p) work, the latter O(p3/2). In this, as we will
see, the simplified CDS hash function contains the seeds of its own destruction.

Genus-2 SIDH. Flynn and Ti [19] defined an SIDH analogue in dimension g = 2.
As in the hash functions above, Richelot isogenies are used for Alice’s steps in
Γ2(2; p), while explicit formulæ for (3, 3)-isogenies on Kummer surfaces are used
for Bob’s steps in Γ2(3; p). Walks may (improbably) run into S2(p)

E , as with
the hash functions above; but the same work-arounds apply without affecting
security. (Further, if we generate a public key in S2(p)

E , then we can discard it
and generate a new one in S2(p)

J .) As with SIDH, breaking public keys amounts
to computing short solutions to the isogeny problem in Γ2(2; p) or Γ2(3; p),
though presumably endomorphism attacks generalizing [17] also exist.

7 Attacking the isogeny problem in superspecial graphs

We want to solve the isogeny problem in Γg(ℓ; p). We can always do this using

random walks in O(
√

#Sg(p)) = O(pg(g+1)/4) classical steps.
Our idea is that Sg−1(p) × S1(p) maps into Sg(p) by mapping a pair of

PPAVs to their product equipped with the product polarization, and the image
of Sg−1(p) × S1(p) represents a large set of easily-identifiable “distinguished
vertices” in Γg(ℓ; p). Indeed, since the map Sg−1(p)×S1(p) → Sg(p) is generically
finite, of degree independent of p, Lemma 1 implies that

#Sg(p)/#(image of Sg−1(p)× S1(p)) = O(pg−1) for g > 1 . (4)

We can efficiently detect such a step into a product PPAV in a manner analogous
to that of the failure of the CDS hash function: for example, by the breakdown
of a higher-dimensional analogue of Richelot’s formulæ such as [30].

We can walk into this subset, then recursively solve the path-finding problem
in the subgraphs Γg−1(ℓ; p), . . . , Γ1(ℓ; p) (each time walking from Γi(ℓ; p) into
Γi−1(ℓ; p)×Γ1(ℓ; p)) before gluing the results together to obtain a path in Γg(ℓ; p).

Lemma 3. Let α : A → A′ and β : B → B′ be walks in Γi(ℓ; p) and Γj(ℓ; p) of
lengths a and b, respectively. If a ≡ b (mod 2), then we can efficiently compute
a path of length max(a, b) from A×B to A′ ×B′ in Γi+j(ℓ; p).

Proof. Write α = α1 ◦ · · · ◦αa and β = β1 ◦ · · · ◦βb as compositions of (ℓ, · · · , ℓ)-
isogenies. WLOG, suppose a ≥ b. Set βb+1 = βb

†, βb+2 = βb, ..., βa−1 = βb
†,

βa = βb; then α×β : (α1×β1)◦· · ·◦(αa×βa) is a path from A×B to A′×B′. ⊓⊔

Equations 3 and 4 show that a walk of length O(log p) lands in the image
of Sg−1(p) × S1(p) with probability O(1/pg−1), and after O(pg−1) such short
walks we are in Sg−1(p)×S1(p) with probability bounded away from zero. More
generally, we can walk into the image of Sg−i(p) × Si(p) for any 0 < i < g; but
the probability of this is O(1/pi(g−i)), which is maximised by i = 1 and g − 1.
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Algorithm 1: Computing isogeny paths in Γg(ℓ; p)

Input: A and A′ in Sg(p)
Output: A path φ : A → A′ in Γg(ℓ; p)

1 Find a path ψ from A to some point B × E in Sg−1(p)× S1(p)
2 Find a path ψ′ from A′ to some point B′ × E ′ in Sg−1(p)× S1(p)
3 Find a path β : B → B′ in Γg−1(ℓ; p) using Algorithm 1 recursively if g − 1 > 1,

or elliptic path-finding if g − 1 = 1
4 Find a path η : E → E ′ in Γ1(ℓ; p) using elliptic path-finding
5 Let b = length(β) and e = length(η). If b 6≡ e (mod 2), then fail and return ⊥

(or try again with another ψ and/or ψ′, β, or η)
6 Construct the product path π : B × E → B′ × E ′ defined by Lemma 3.

7 return the path φ := ψ′† ◦ π ◦ ψ from A to A′.

Proof of Theorem 1 Algorithm 1 implements the approach above, and proves
Theorem 1. Step 1 computes ψ by taking O(pg−1) non-backtracking random
walks of length O(log(p)) which can be trivially parallelized, so with P proces-

sors we expect Õ(pg−1/P ) steps before finding ψ. (If A is a fixed public base

point then we can assume ψ is already known). Likewise, Step 2 takes Õ(pg−1/P )
steps to compute ψ′. After g− 1 recursive calls, we have reduced to the problem
of computing paths in Γ1(ℓ; p) in Step 4, which can be done in time O(

√
p/P ).

Step 7 applies Lemma 3 to compute the final path in polynomial time. At each
level of the recursion, we have a 1/2 chance of having the same walk-length
parity; hence, Algorithm 1 succeeds with probability 1/2g−1. This could be im-
proved by computing more walks when the parities do not match, but 1/2g−1

suffices to prove the theorem. The total runtime is Õ(pg−1/P ) isogeny steps.

Proof of Theorem 2 Algorithm 1 can be run in a quantum computation
model as follows. First, recall from the proof of Theorem 1 that Steps 1 and 2
find product varieties by taking O(pg−1) walks of length O(log(p)). Here we
proceed following Biasse, Jao and Sankar [3, §4]. Let N be the number of walks
in O(pg−1) of length λ (in O(log(p))). To compute ψ, we define an injection

f : [1, . . . , N ] −→ {nodes of distance λ starting from A} ,

and a function Cf : [1, . . . , N ] → {0, 1} by Cf (x) = 1 if f(x) is in Sg−1(p) ×
S1(p), and 0 otherwise. If there is precisely one x with Cf (x) = 1, Grover’s

algorithm [24] will find it (with probability ≥ 1/2) in O(
√
N) iterations. If there

are an unknown t ≥ 1 such solutions, then Boyer–Brassard–Høyer–Tapp [5] finds
one in O(

√
N/t) iterations. Hence, if we take λ large enough to expect at least

one solution, then we will find it in O(
√
pg−1) Grover iterations. We compute

ψ′ (and any recursive invocations of Steps 1 and 2) similarly.
For the elliptic path finding in Steps 3 and 4, we can apply (classical) Pollard-

style pseudorandom walks which require Õ(
√
p) memory and Õ(

√
p) operations

to find an ℓ-isogeny path. Alternatively, we can reduce storage costs by applying
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Grover’s algorithm to the full graph Γ1(ℓ; p) to find an ℓ-isogeny path in expected
time O(

√
p). Finally, Step 7 applies Lemma 3 to compute the final path.

Remark 2. We can use the same approach as Algorithm 1 to compute explicit en-
domorphism rings of superspecial PPAVs. Suppose we want to compute End(A)
for some g-dimensional A in Sg(p). Following the first steps of Algorithm 1, we
compute a walk φ from A into Sg−1(p)×S1(p), classically or quantumly, recurs-
ing until we end up at some E1 × · · · × Eg in S1(p)

g. Now we apply an elliptic
endomorphism-ring-computing algorithm to each of the Ei; this is equivalent to
solving the isogeny problem in Γ1(ℓ; p) (see [17, §5]), so its cost is in Õ(

√
p). The

products of the generators for the End(Ei) form generators for End(E1×· · ·×Eg),
which we can then pull back through φ to compute a finite-index subring of
End(A) that is maximal away from ℓ. The total cost is a classical Õ(pg−1/P )

(on P processors), or a quantum Õ(
√
pg−1), plus the cost of the pullback.

Remark 3. Algorithm 1 computes compositions of (ℓ, . . . , ℓ)-isogenies. If we relax
and allow arbitrary-degree isogenies, not just paths in Γg(ℓ; p) for fixed ℓ, then the
elliptic path-finding steps can use the classical Delfs–Galbraith [14] or quantum
Biasse–Jao–Sankar [3] algorithms. While this would not change the asymptotic
runtime of Algorithm 1 (under the reasonable assumption that the appropriate
analogue of vertices “defined over Fp” with commutative endomorphism rings

form a subset of size O(
√

#Sg(p))), both of these algorithms have low memory
requirements and are arguably more implementation-friendly than Pollard-style
pseudorandom walks [14, §4].

8 Cryptographic implications

Table 1 compares Algorithm 1 with the best known attacks for dimensions g ≤ 6.
For general path-finding, the best known algorithms are classical Pollard-style
pseudorandom walks and quantum Grover search [24,5]. As noted in Remark 3,
higher-dimensional analogues of Delfs–Galbraith [14] or Biasse–Jao–Sankar [3]
might yield practical improvements, without changing the asymptotic runtime.

Table 1. Logarithms (base p) of asymptotic complexities of algorithms for solving the
isogeny problems in Γg(ℓ; p) for 1 ≤ g ≤ 6. Further explanation in text.

Dimension g 1 2 3 4 5 6

Classical
Algorithm 1 — 1 2 3 4 5

Pollard/Delfs–Galbraith [14] 0.5 1.5 3 5 7.5 10.5

Quantum
Algorithm 1 — 0.5 1 1.5 2 2.5

Grover/Biasse–Jao–Sankar [3] 0.25 0.75 1.5 2.5 3.75 4.25

The paths in Γg(ℓ; p) constructed by Algorithm 1 are generally too long to be
private keys for SIDH analogues, which are paths of a fixed and typically shorter
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length. Extrapolating from g = 1 [27] and g = 2 [19], we suppose that the secret
keyspace has size O(

√
#Sg(p)) = O(pg(g+1)/4) and the target isogeny has degree

in O(
√
p), corresponding to a path of length roughly logℓ(p)/2 in Γg(ℓ; p). On

the surface, therefore, Algorithm 1 does not yield a direct attack on SIDH-style
protocols; or, at least, not a direct attack that succeeds with high probability.
(Indeed, to resist direct attacks from Algorithm 1, it would suffice to abort any
key generations passing through vertices in Sg−1(p)× S1(p).)

However, we can anticipate an attack via endomorphism rings, generalizing
the attack described at the end of §3, using the algorithm outlined in Remark 2.
If we assume that what is polynomial-time for elliptic endomorphisms remains
so for (fixed) g > 1, then we can break g-dimensional SIDH keys by computing
shortest paths in Γg(ℓ; p) with the same complexity as Algorithm 1: that is,

classical Õ(pg−1/P ) and quantum Õ(p(g−1)/2) for g > 1.
This conjectural cost compares very favourably against the best known clas-

sical and quantum attacks on g-dimensional SIDH. In the classical paradigm,
a meet-in-the-middle attack would run in Õ(pg(g+1)/8), with similar storage re-
quirements. In practice the best attack is the golden-collision van Oorschot–
Wiener (vOW) algorithm [38] investigated in [1], which given storage w runs in

expected time Õ(p3g(g+1)/16/(P
√
w)). For fixed w, the attack envisioned above

gives an asymptotic improvement over vOW for all g > 1. If an adversary has
access to a large amount of storage, then vOW may still be the best classical
algorithm for g ≤ 5, particularly when smaller primes are used to target lower
security levels. (vOW becomes strictly worse for all g > 5, even if we assume un-
bounded storage.) In the quantum paradigm, Tani’s algorithm [37] would succeed

in Õ(pg(g+1)/12), meaning we get the same asymptotic complexities for dimen-
sions 2 and 3, and an asymptotic improvement for all g > 3. Moreover, Jaques
and Schanck [28] suggest a significant gap between the asymptotic runtime of
Tani’s algorithm and its actual efficacy in any meaningful model of quantum
computation. On the other hand, the bottleneck of the quantum attack fore-
casted above is a relatively straightforward invocation of Grover search, and the
gap between its asymptotic and concrete complexities is likely to be much closer.

Like the size of Sg(p), the exponents in the runtime complexities of all of the
algorithms above are quadratic in g. Indeed, this was the practical motivation for
instantiating isogeny-based cryptosystems in g > 1. In contrast, the exponents
for Algorithm 1 and our proposed SIDH attack are linear in g. This makes the
potential trade-offs for cryptosystems based on higher-dimensional supersingular
isogeny problems appear significantly less favourable, particularly as g grows and
the gap between the previous best attacks and Algorithm 1 widens.

References

1. G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
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A A proof-of-concept implementation

We include a naive Magma implementation of the product finding stage (i.e.
Steps 1-3) of Algorithm 1 in dimension g = 2 with ℓ = 2. First, it generates
a challenge by walking from the known superspecial node corresponding to the
curve C : y2 = x5 + x over a given Fp2 to a random abelian surface in Γ2(2; p),
which becomes the target A. Then it starts computing random walks of length
slightly larger than log2(p), whose steps correspond to (2, 2)-isogenies. As each
step is taken, it checks whether we have landed on a product of two elliptic
curves (at which point it will terminate) before continuing.

Magma’s built-in functionality for (2, 2)-isogenies makes this rather straight-
forward. At a given node, the function RichelotIsogenousSurfaces computes
all 15 of its neighbours, so our random walks are simply a matter of generating
enough entropy to choose one of these neighbours at each of the O(log(p)) steps.
For the sake of replicability, we have used Magma’s inbuilt implementation of
SHA-1 to produce pseudo-random walks that are deterministically generated by
an input seed. SHA-1 produces 160-bit strings, which correspond to 40 integers
in [0, 1, . . . , 15]; this gives a straightforward way to take 40 pseudo-random steps
in Γ2(2; p), where no step is taken if the integer is 0, and otherwise the index is
used to choose one of the 15 neighbours.

The seed processor can be used to generate independent walks across mul-
tiple processors. We always used the seed “0” to generate the target surface, and
set processor to be the string “1” to kickstart a single process for very small
primes. For the second and third largest primes, we used the strings “1”, “2”,
. . . , “16” as seeds to 16 different deterministic processes. For the largest prime,
we seeded 128 different processes.

For the prime p = 127 = 27 − 1, the seed “0” walks us to the starting node
corresponding to C0/Fp2 : y2 = (41i+ 63)x6 + · · ·+ (6i + 12)x+ 70. The single
processor seeded with “1” found a product variety E1 × E2 on its second walk
after taking 53 steps in total, with E1/Fp2 : y2 = x3 + (93i + 43)x2 + (23i +
93)x+ (2i+ 31) and E2/Fp2 : y2 = x3 + (98i+ 73)x2 + (30i+ 61)x+ (41i+ 8).

For the prime p = 8191 = 213−1, the single processor seeded with “1” found
a product variety on its 175-th walk after taking 6554 steps in total.
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For the prime p = 524287 = 219 − 1, all 16 processors were used. The
processor seeded with “2” was the first to find a product variety on its 311-th
walk after taking 11680 steps in total. Given that all processors walk at roughly
the same pace, at this stage we would have walked close to 16 · 11680 = 186880

steps.
For the 25-bit prime p = 17915903 = 21337 − 1, the processor seeded with

“13” found a product variety after taking 341 walks and a total of 12698 steps.
At this stage the 16 processors would have collectively taken around 203168

steps.
The largest experiment that we have conducted to date is with the prime

p = 2147483647 = 231 − 1, where 128 processors walked in parallel. Here the
processor seeded with “95” found a product variety after taking 10025 walks
and a total of 375703 steps. At this stage the processors would have collectively
taken around 48089984 steps.

In all of the above cases we see that product varieties are found with around
p steps. The Magma script that follows can be used to verify the experiments5,
or to experiment with other primes.

5 Readers without access to Magma can make use of the free online calculator at
http://magma.maths.usyd.edu.au/calc/, omitting the “Write” functions at the
end that are used to print to local files.

http://magma.maths.usyd.edu.au/calc/
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//////////////////////////////////////////////////////////

clear;

processor:="1";

p:=2^13-1;

Fp:=GF(p);

Fp2<i>:=ExtensionField<Fp,x|x^2+1>;

_<x>:=PolynomialRing(Fp2);

//////////////////////////////////////////////////////////

Next_Walk := function(str)

H := SHA1(str);

steps := [ StringToInteger(x, 16): x in ElementToSequence(H) | x ne "0"];

return steps ,H;

end function;

//////////////////////////////////////////////////////////

Walk_To_Starting_Jacobian:=function(str)

steps,H:= Next_Walk(str);

C0:=HyperellipticCurve(x^5+x);

J0:=Jacobian(C0);

for i:=1 to #steps do

neighbours:=RichelotIsogenousSurfaces(J0);

if Type(neighbours[steps[i]]) ne SetCart then

J0:=neighbours[steps[i]];

end if;

end for;

return J0;

end function;

//////////////////////////////////////////////////////////

Walk_Until_Found:=function(seed,J0);

found:=false;

H:=seed;

found:=false;

walks_done:=0;

steps_done:=0;

while not found do

walks_done+:=1;

walks_done, "walks and",steps_done, "steps on core", processor, "for p=",p;

J:=J0;

steps,H:=Next_Walk(H);

for i:=1 to #steps do

steps_done+:=1;

J:=RichelotIsogenousSurfaces(J)[steps[i]];

if Type(J) eq SetCart then

found:=true;

index:=i;

break;

end if;

end for;

end while;

return steps,index,walks_done,steps_done,J;

end function;

//////////////////////////////////////////////////////////

file_name:="p" cat IntegerToString(p) cat "-" cat processor cat ".txt";

J0:=Walk_To_Starting_Jacobian("0");

steps,index,walks_done,steps_done,J:=Walk_Until_Found(processor,J0);

Write(file_name, "walks done =");

Write(file_name, walks_done);

Write(file_name, "steps_done =");

Write(file_name, steps_done);

Write(file_name, "steps=");

Write(file_name, steps);

Write(file_name, "index=");

Write(file_name, index);

Write(file_name, "Elliptic Product=");

Write(file_name, J);

//////////////////////////////////////////////////////////
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