Skip to main content

Implementing Two Recent Techniques for Delivering Nano-robots to Cancer Area

  • Conference paper
  • First Online:
  • 3251 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1153))

Abstract

Recently, it has been proposed to use Nano-robots in cancer treatment. These Nano-robots are injected in the human body. Then they travel through the blood vessels searching for cancer cells. After reaching these cells, the Nano-robots release the drug to destroy only the infected cells while leaving the uninfected ones untouched. In this way we can overcome the drawbacks of the traditional methods for treating cancer (chemo-therapy and radio-therapy). In this paper we apply a powerful algorithm called Teaching Learning Based Optimization (TLBO) to deliver a swarm of Nano-robots to their target. Then we compare this algorithm with the Directed Particle Swarm Optimization (DPSO) algorithm for the same problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devasena Umai, R., Brindha Devi, P., Thiruchelvi, R.: A review on DNA nanobots - a new technique for cancer treatment. Asian J. Pharm. Clin. Res. 11(6), 61–64 (2018)

    Article  Google Scholar 

  2. Ezzat, D., Amin, S., Shedeed, H.A., Tolba, M.F.: A new Nano-robots control strategy for killing cancer cells using quorum sensing technique and directed particle swarm optimization algorithm. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 218–226. Springer, Cairo (2019)

    Google Scholar 

  3. Binitha, S., Sathya, S.S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2, 137–151 (2012)

    Google Scholar 

  4. Kennedy, J., Kennedy, J.F., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, Burlington (2001)

    Google Scholar 

  5. Mahale, R.A., Chavan, S.: A survey: evolutionary and swarm based bio-inspired optimization algorithms. Int. J. Sci. Res. Publ. 2, 1–6 (2012)

    Google Scholar 

  6. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  7. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel optimization method for continuous non-linear large scale problems. Inform. Sci. 183(1), 1–15 (2011)

    Article  Google Scholar 

  8. Rao, R.V., Patel, V.: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3(4), 535–560 (2012)

    Google Scholar 

  9. Ezzat, D., Amin, S., Shedeed, H.A., Tolba, M.F.: Directed particle swarm optimization technique for delivering Nano-robots to cancer cells. In: Proceedings of IEEE International Conference on Computer Engineering and Systems (ICCES 2018), Cairo, pp. 80–84 (2018)

    Google Scholar 

  10. Ummat, A., Sharma, G., Mavroidis, C., Dubey, A.: Biomedical engineering handbook. In: Bio-Nanorobotics: State of the Art and Future Challenges. CRC Press, London (2005)

    Google Scholar 

  11. Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Nanorobot for brain aneurysm. Int. J. Robot. Res. 28(4), 558–570 (2009)

    Article  Google Scholar 

  12. Cavalcanti, A., Shirinzadeh, B., Kretly, L.: Medical nanorobotics for diabetes control. Nanomedicine 4, 127–138 (2008)

    Article  Google Scholar 

  13. Cavalcanti, A., Shirinzadeh, B., Freitas, R., Hogg, T.: Nanorobot architecture for medical target identification. Nanotechnology 19, 1–15 (2008)

    Article  Google Scholar 

  14. Cavalcanti, A., Freitas, R.: Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans. Nanobiosci. 4, 133–140 (2005)

    Article  Google Scholar 

  15. Cavalcanti, A.: Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans. Nanotechnol. 2, 82–87 (2003)

    Article  Google Scholar 

  16. Freitas, R.: What is nanomedicine? Nanomedicine 1, 2–9 (2005)

    Article  Google Scholar 

  17. Cavalcanti, A., Freitas, R.: Autonomous multi-robot sensor-based cooperation for nanomedicine. Int. J. Nonlinear Sci. Numer Simul. 3, 743–746 (2002)

    Article  Google Scholar 

  18. Lewis, M., Bekey, G.: The behavioral self-organization of nanorobots using local rules. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 1333–1338 (1992)

    Google Scholar 

  19. Chandrasekaran, S., Hougen, D.: Swarm intelligence for cooperation of bio-nano robots using quorum sensing. In: Bio Micro and Nanosystems Conference, San Francisco, p. 104 (2006)

    Google Scholar 

  20. Zhang, S., Li, S., Guo, Y.: Cooperative control design for Nano-robots in drug delivery. In: Guo, Y. (ed.) Selected Topics in Micro/Nano-Robotics for Biomedical Applications, pp. 101–123. Springer, New York (2013)

    Chapter  Google Scholar 

  21. Ahmed, S., Amin, S., Alarif, T.: Simulation for the motion of nanorobots in human blood stream environment. In: Proceedings of Scientific Cooperation International Workshops on Electrical and Computer Engineering Subfields, pp. 70–75, Koc University, Istanbul (2014)

    Google Scholar 

  22. Ahmed, S., Amin, S., Alarif, T.: Efficient cooperative control system for pH sensitive nanorobots in drug delivery. Int. J. Comput. Appl. 103(1), 0975–8887 (2014)

    Google Scholar 

  23. Cao, J., Li, M., Wang, H., Huang, L., Zhao, Y.: An improved bacterial foraging algorithm with cooperative learning for eradicating cancer cells using nanorobots. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Qingdao (2016)

    Google Scholar 

  24. Chen, Y., Shi, S., Yao, X., Nakano, T.: Touchable computing: computing-inspired bio-detection. IEEE Trans. Nanobiosci. 16(8), 810–821 (2017)

    Article  Google Scholar 

  25. Lambe, A.: Reinforcement learning for optimal path length of nanobots using dynamic programming. In: Proceedings of IEEE International Conference on Industrial and Information Systems, Peradeniya (2017)

    Google Scholar 

  26. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ezzat, D., Amin, S., Shedeed, H.A., Tolba, M.F. (2020). Implementing Two Recent Techniques for Delivering Nano-robots to Cancer Area. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_44

Download citation

Publish with us

Policies and ethics