Skip to main content

Path Planning of a Self Driving Vehicle Using Artificial Intelligence Techniques and Machine Vision

  • Conference paper
  • First Online:
Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) (AICV 2020)

Abstract

This paper aims to implement an efficient model of the most optimum path to follow an object on a Self Driving Vehicle (SDV). The path of the vehicle is predicted by using Machine Vision (MV) and Neural networks (NN) model. The NN model uses numerous amounts of training data. First the system works by using the MV algorithms to detect objects with predefined colors. Then, the location of the object is fed to the trained NN to get the speeds of the motors needed to reach the object. The training data are obtained from the manual driving of the vehicle in different experiment settings. In this paper, the neural model is compared with two other methods: object detection using MV model and fuzzy logic (FL) model to prove the efficiency of the neural model. All the three models depend on the live record of the camera board and its fast detection of objects using MV algorithms. The three models showed quite similar results; however, the NN model was much more stable and closer to the optimum path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Santos, V., Pardo, X., Iglesias, R., Canedo-Rodriguez, A., Regueiro, C.: Feature analysis for human recognition and discrimination: application to a person-following behaviour in a mobile robot. Robot. Auton. Syst. 60(8), 1021–1036 (2012)

    Article  Google Scholar 

  2. Azar, A.T., Aly, A.M., Sayed, A.S., Radwan, M.E., Ammar, H.H.: Neuro-fuzzy system for 3-DOF parallel robot manipulator. In: 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES), vol. 1, pp. 1–5 (2019)

    Google Scholar 

  3. Azar, A.T., Sayed, A.S., Shahin, A.S., Elkholy, H.A., Ammar, H.H.: PID controller for 2-DOFs twin rotor mimo system tuned with particle swarm optimization. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, pp. 229–242. Springer, Cham (2020)

    Google Scholar 

  4. Barakat, M.H., Azar, A.T., Ammar, H.H.: Agricultural service mobile robot modeling and control using artificial fuzzy logic and machine vision. In: Advances in Intelligent Systems and Computing, pp. 453–465 (2019)

    Google Scholar 

  5. Davies, R., Wilson, I., Ware, A.: Stereoscopic human detection in a natural environment. Ann. Emerg. Technol. Comput. 2(2), 15–23 (2018)

    Article  Google Scholar 

  6. Giusti, A., Guzzi, J., Ciresan, D.C., He, F.L., Rodriguez, J.P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Caro, G.A.D., Scaramuzza, D., Gambardella, L.M.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1, 661–667 (2016)

    Article  Google Scholar 

  7. Gorripotu, T.S., Samalla, H., Jagan Mohana Rao, C., Azar, A.T., Pelusi, D.: Tlbo algorithm optimized fractional-order PID controller for AGC of interconnected power system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics, pp. 847–855. Springer, Singapore (2019)

    Chapter  Google Scholar 

  8. Kamal, N.A., Azar, A.T., Elbasuony, G.S., Almustafa, K.M., Almakhles, D.: PSO-based adaptive perturb and observe MPPT technique for photovoltaic systems. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, pp. 125–135. Springer, Cham (2020)

    Google Scholar 

  9. Kleinehagenbrock, M., Lang, S., Fritsch, J., Lomker, F., Fink, G., Sagerer, G.: Person tracking with a mobile robot based on multi-modal anchoring. In: Proceedings 11th IEEE International Workshop on Robot and Human Interactive Communication (2002)

    Google Scholar 

  10. Liu, P., Ma, Y., Zuo, Y.: Self-driving vehicles: are people willing to trade risks for environmental benefits? Transp. Res. Part A: Policy Pract. 125, 139–149 (2019)

    Google Scholar 

  11. Ohn-Bar, E., Trivedi, M.M.: Looking at humans in the age of self-driving and highly automated vehicles. IEEE Trans. Intell. Veh. 1(1), 90–104 (2016)

    Article  Google Scholar 

  12. Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  13. Saito, M., Kitaguchi, K., Kimura, G., Hashimoto, M.: Human detection from fish-eye image based on probabilistic appearance model. Trans. Soc. Instrum. Control Eng. 49(3), 319–325 (2013)

    Article  Google Scholar 

  14. Sallab, A., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. Electron. Imaging 19, 70–76 (2017)

    Article  Google Scholar 

  15. Sivaraman, S., Trivedi, M.M.: A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans. Intell. Transp. Syst. 11, 267–276 (2010)

    Article  Google Scholar 

  16. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25(3), 599–611 (2011)

    Article  Google Scholar 

  17. Soliman, M., Azar, A.T., Saleh, M.A., Ammar, H.H.: Path planning control for 3-omni fighting robot using PID and fuzzy logic controller. In: Advances in Intelligent Systems and Computing, pp. 442–452 (2019)

    Google Scholar 

  18. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

    Article  Google Scholar 

  19. Stilgoe, J.: Machine learning, social learning and the governance of self-driving cars. Soc. Stud. Sci. 48(1), 25–56 (2018). https://doi.org/10.1177/0306312717741687. pMID: 29160165

    Article  Google Scholar 

  20. Wang, G., Makino, K., Harmandayan, A., Wu, X.: Eco-driving behaviors of electric vehicle users: a survey study. Transp. Res. Part D: Transp. Environ. 78(102), 188 (2020)

    Google Scholar 

  21. Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation techniques. Procedia Comput. Sci. 65, 797–806 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elkholy, H.A., Azar, A.T., Shahin, A.S., Elsharkawy, O.I., Ammar, H.H. (2020). Path Planning of a Self Driving Vehicle Using Artificial Intelligence Techniques and Machine Vision. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_50

Download citation

Publish with us

Policies and ethics