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Abstract. Missing data is a common occurrence in the time series
domain, for instance due to faulty sensors, server downtime or patients
not attending their scheduled appointments. One of the best methods to
impute these missing values is Multiple Imputations by Chained Equa-
tions (MICE) which has the drawback that it can only model linear rela-
tionships among the variables in a multivariate time series. The advance-
ment of deep learning and its ability to model non-linear relationships
among variables make it a promising candidate for time series imputa-
tion. This work proposes a modified Convolutional Denoising Autoen-
coder (CDA) based approach to impute multivariate time series data
in combination with a preprocessing step that encodes time series data
into 2D images using Gramian Angular Summation Field (GASF). We
compare our approach against a standard feed-forward Multi Layer Per-
ceptron (MLP) and MICE. All our experiments were performed on 5
UEA MTSC multivariate time series datasets, where 20 to 50% of the
data was simulated to be missing completely at random. The CDA model
outperforms all the other models in 4 out of 5 datasets and is tied for
the best algorithm in the remaining case.

Keywords: Convolutional Denoising Autoencoder · Gramian Angular
Summation Field · MICE · MLP. · Imputation · Time series

1 Introduction

Time series data resides in various domains of industries and research fields
and is often corrupted with missing data. For further use or analysis, the data
often needs to be complete, which gives the rise to the need for imputation
techniques with enhanced capabilities of introducing least possible error into
the data. One of the most prominent imputation methods is MICE which uses
iterative regression and value replacement to achieve state-of-the-art imputation
quality but has the drawback that it can only model linear relationships among
variables (dimensions).
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In past few years, different deep learning architectures were able to break into
different problem domains, often exceeding previously achieved performances by
other algorithms [7]. Areas like speech recognition, natural language process-
ing, computer vision, etc. were greatly impacted and improved by deep learning
architectures. Deep learning models have a robust capability of modelling latent
representation of the data and non-linear patterns, given enough training data.
Hence, this work presents a deep learning based imputation model called Con-
volutional Denoising Autoencoder (CDA) with altered convolution and pooling
operations in Encoder and Decoder segments. Instead of using the traditional
steps of convolution and pooling, we use deconvolution and upsampling which
was inspired by [5]. The time series to image transformation mechanisms pro-
posed in [12] and [13] were inherited as a preprocessing step as CDA models
are typically designed for images. As rival imputation models, Multiple Imputa-
tion by Chained Equations (MICE) and a Multi Layer Perceptron (MLP) based
imputation were incorporated.

2 Related Work

Three distinct types of missingness in data were identified in [8]. The first one
is Missing Completely At Random (MCAR), where the missingness of the data
does not depend on itself or any other variables. In Missing At Random (MAR)
the missing value depends on other variables but not on the variable where the
data is actually missing and in Missing Not At Random (MNAR) the missingness
of an observation depends on the concerned variable itself. All the experiments
in this study were carried out on MCAR missingness as reproducing MAR and
MNAR missingness can be challenging and hard to distinguish [5].

Multiple Imputation by Chained Equations (MICE) has secured its place as
a principal method for imputing missing data [1]. Costa et al. in [3] experimented
and showed that MICE offered the better imputation quality than a Denoising
Autoencoder based model for several missing percentages and missing types.

A novel approach was proposed in [14], incorporating General Adversarial
Networks (GAN) to perform imputations, thus authors named it Generative
Adversarial Imputation Nets (GAIN). The approach imputed significantly well
against some state-of-the-art imputation methods including MICE. An Autoen-
coder based approach was proposed in [4], which was compared against an Arti-
ficial Neural Network (NN) model on MCAR missing type and several missing
percentages. The proposed model performed well against NN. A novel Denoising
Autoencoder based imputation using partial loss (DAPL) approach was pre-
sented in [9], where different missing data percentages and MCAR missing type
were simulated in a breast cancer dataset. The comparisons incorporated sta-
tistical, machine learning based approaches and standard Denoising Autoen-
coder (DAE) model where DAPL outperformed DAE and all the other models.
An MLP based imputation approach was presented for MCAR missingness in
[10] and also outperformed other statistical models. A Convolutional Denois-
ing Autoencoder model which did not impute missing data but denoised audio
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signals was presented in [15]. A Denoising Autoencoder with more units in the
encoder layer than input layer was presented in [5] and achieved good impu-
tation results against MICE. Our work was inspired from both of these works
which is why we combined the two approaches into a Convolutional Denoising
Autoencoder which maps input data into a higher subspace in the Encoder.

3 Methodology

In this section we first describe how we introduce missing data in our datasets,
then we show the process used to turn multivariate time series into images
which is required by one of our imputation methods and finally we introduce the
imputation methods which were compared in this study.

3.1 Simulating Missing Data

Simulating missing data is a mechanism of artificially introducing unobserved
data into a complete time series dataset. Our experiment incorporated 20%,
30%, 40% and 50% of missing data and the missing type was MCAR. Introducing
MCAR missingness is quite a simple approach as it does not depend on observed
or unobserved data. Many studies assume MCAR missing type quite often when
there is no concrete evidence of missingness type [6]. In this experimental frame-
work, values at randomly selected indices were erased from randomly selected
variables which simulated MCAR missingness of different percentages.

3.2 Translating Time Series into Images

A novel approach of encoding time series data into various types of images using
Gramian Angular Field (GAF) was presented in [12] to improve classification
and imputation. One of the variants of GAF was Gramian Angular Summation
Field (GASF), which comprised of multiple steps to perform the encoding. First,
the time series is scaled within [−1, 1] range.

x′
i =

(xi − Max(X)) + (xi − Min(X))
Max(X) − Min(X)

(1)

Here, xi is a specific value at timepoint i where x′
i is derived by scaling and

X is the time series. The time series is scaled within [−1, 1] range in order to be
represented as polar coordinates achieved by applying angular cosine.

θi = arccos(x′
i){−1 <= x′

i <= 1, x′
i ∈ X} (2)

The polar encoded time series vector is then transformed into a matrix. If
the length of the time series vector is n, then the transformed matrix is of shape
(n × n).

GASFi,j = cos(θi + θj) (3)
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The GASF represents the temporal features in the form of an image where
the timestamps move along top-left to bottom-right, thereby preserving the time
factor in the data. Figure 1 shows the different steps of time series to image
transformation.

Fig. 1. Time series to image transformation

The methods of encoding time series into images described in [12] were only
applicable for univariate time series. The GASF transformation generates one
image for one time series dimension and thus it is possible to generate multiple
images for multivariate time series. An approach which vertically stacked images
transformed from different variables was presented in [13], see Fig. 2. The images
were grayscaled and the different orders of vertical stacking (ascending, descend-
ing and random) were examined by performing a statistical test. The stacking
order did not impact classification accuracy.

Fig. 2. Vertical stacking of images transformed from different variables
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3.3 Convolutional Denoising Autoencoder

Autoencoder is a very popular unsupervised deep learning model frequently
found in different application areas. Autoencoder is unsupervised in fashion and
reconstructs the original input by discovering robust features in the hidden layer
representation. The latent representation of high dimensional data in the hid-
den layer contributes in reconstructing the original data. The architecture of
Autoencoder consists of two principal segments named Encoder and Decoder.
The Encoder usually compresses the original representation of the data into
lower dimension. The Decoder decodes the low dimensional representation of
the input back into its original dimensional representation.

Encoder(xn) = s(xnWE + bE) = xd (4)

Decoder(xd) = s(xdWD + bD) = xn (5)

Here, xn is the original input with n dimensions. s is any non-linear activation
function, W is weight and b is bias.

Denoising Autoencoder model is an extension of Autoencoder where the input
is reconstructed from a corrupted version of it. There are different ways of adding
corruption, such as Gaussian noise, setting some values to zero etc. The noisy
input is fed as input and the model minimizes the loss between the clean input
and corrupted reconstructed input. The objective function looks as follows

RMSE(X,X ′)
1
n

√
|Xclean − X ′

reconstructed|2 (6)

Convolutional Denoising Autoencoder (CDA) incorporates convolution oper-
ation which is ideally performed in Convolutional Neural Networks (CNN). CNN
is a methodology, where the layers of perceptrons are replaced by convolution
layers and convolution operation is performed on the data. Convolution is defined
as multiplication of two function within a finite or infinite range, where two func-
tions refer to input data (e.g. Image) and a fixed size kernel consecutively. The
kernel traverses through the input space to generate feature maps. The feature
maps consist of important features of the data. The multiple features are pooled,
preserving important features.

The combination of convoluted feature maps generation and pooling is per-
formed in the Encoder layer of CDA where the corrupted version of the input is
fed into the input layer of the network. The Decoder layer performs Deconvolu-
tiont and Upsampling which decompresses the output coming from Encoder layer
back into the shape of input data. The loss between reconstructed data and clean
data is minimized. In this work, the default architecture of CDA is tweaked in
the favor of imputing multivariate time series data. Deconvolution and Upsam-
pling were performed in the Encoder layer and Convolution and Maxpooling
was performed in Decoder layer. The motivation behind this specific tweaking
came from [5], where a Denoising Autoencoder was designed with more hidden
units in the Encoder layer than input layer. The high dimensional representation
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in Encoder layer created additional feature which was the contributor of data
recovery.

3.4 Competitor Models

Multiple Imputation by Chained Equations (MICE): MICE, which is sometimes
addressed as fully conditional specification or sequential regression multiple
imputation, has emerged in the statistical literature as the principal method
of addressing missing data [1]. MICE creates multiple versions of the imputed
datasets through multiple imputation technique.

The steps for performing MICE are the following:

– A simple imputation method is performed across the time series (mean, mode
or median). The missing time points are referred as “placeholders”.

– If there are total m variables having missing points, then one of the vari-
ables are set back to missing state. The variable with “missing state” label
is considered as dependent variable and other variables are considered as
predictors.

– A regression is performed over these settings and “missing state” variable is
imputed. Different regressions are supported in this architecture but since the
dataset only contains continuous values, linear, ridge or lasso regression are
chosen.

– The remaining m − 1 “missing state” are regressed and imputed by the same
way. Once all the m variables are imputed, one iteration is completed. More
iterations are performed and the imputations are placed in the time series in
each iteration.

– The number of iterations can be determined by observing whether coefficients
of the regression model are converged or not.

According to the experimental setup of our work, MICE had three different
regression supports, namely Linear, Ridge and Lasso regression.

Multi Layer Perceptron (MLP) Based Imputation: The imputation mechanism
of MLP is inspired by the MICE algorithm. Nevertheless, MLP based impu-
tation models do not perform the chained or multiple imputations like MICE
but improve the quality of imputation over several epochs as stochastic gradient
descent optimizes the weights and biases per epoch. A concrete MLP architec-
ture was described in literature [10] which was a three layered MLP with the
hyperbolic tangent activation function in the hidden layer and the identity func-
tion (linear) as the activation function for the output layer. The train and test
split were slightly different, where training set and test set consisted of both
observed and unobserved data.

The imputation process of MLP model in our work is similar to MICE but
the non-linear activation function of MLP facilitates finding complex non-linear
patterns. However, the imputation of a variable is performed only once, in con-
trast to the multiple iterations in MICE.
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4 Experiments

In this section we present the used datasets, the preprocessing steps that
were conducted before training, the chosen hyperparameters and our evalua-
tion method. Our complete imputation process for the CDA model is depicted
in Fig. 3. The process for the competitors is the same except that corrupting the
training data and turning the time series into images is not being done.

Fig. 3. Experiment steps for the CDA model

4.1 Datasets and Data Preprocessing

Our experiments were conducted on 5 time series datasets from the UEA MTSC
repository [2]. Each dataset in UEA time series archive has training and test
splits and specific number of dimensions. Each training or test split represents a
time series. The table below presents all the relevant structural details (Table 1).

Table 1. A structural summary of the 5 UEA MTSC dataset

Dataset name Number of series Dimensions Length Classes

ArticularyWordRecognition 275 9 144 25

Cricket 108 6 1197 12

Handwriting 150 3 152 26

StandWalkJump 12 4 2500 3

UWaveGestureLibrary 120 3 315 8

The Length column of the table denotes the length of each time series. In our
framework, each time series was transformed into images. The number of time
series for any of the datasets was not very high in number. As we had selected
a deep learning model for imputation, such low number of samples could cause
overfitting. Experiments showed us that the default number of time series could
not perform well. Therefore, the main idea was to increase the number of time
series by splitting them into multiple parts and reducing their corresponding
lengths. This modification facilitated us by introducing more patterns for learn-
ing which aided in imputation. The final lengths chosen were those that yielded
the best results. The table below presents the modified number of time series
and lengths for each dataset (Table 2).
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Table 2. Modified number of time series and lengths

Dataset name Number of series Dimension Length

ArticularyWordRecognition 6600 9 6

Cricket 6804 6 19

Handwriting 1200 3 19

StandWalkJump 3000 4 10

UWaveGestureLibrary 1800 3 21

The evaluation of the imputation models require a complete dataset and the
corresponding incomplete dataset. Therefore, artificial missingness was intro-
duced at different percentages (20%, 30%, 40% and 50%) into all the datasets.
After simulating artificial missingness, each dataset has an observed part, which
contains all the time series segments where no variables are missing and an
unobserved part, where at least one variable is missing. After simulating arti-
ficial missingness, each dataset had an observed and unobserved split and the
observed data was further processed for training. As CDA models learn denois-
ing from a corrupted version of the input, we introduced noise by discarding
a certain amount of values for each observed case from specific variables and
replacing them by the mean of the corresponding variables. A higher amount
of noise has seen to be contributing more in learning dependencies of different
variables, which leads to denoising of good quality [11]. The variables selected for
adding noise were the same variables having missing data in unobserved data.
Different amount of noise was examined but 90% noise lead to good results.
Unobserved data was also mean imputed as the CDA model would apply the
denoising technique on the “mean-noise” for imputation. So the CDA learns
to deal with “mean-noise” on the observed part and is then applied on mean
imputed unobserved part to create the final imputation.

The next step was to perform time series to image transformation where, all
the observed and unobserved chunks were rescaled between −1 to 1 using min-
max scaling. Rescaled data was further transformed into polar coordinates and
then GASF encoded image was achieved for each dimension. Multiple images
referring to multiple variables were vertically aggregated. Finally, both observed
and unobserved splits consisted their own set of images.

Note that, the following data preprocessing was performed only for CDA
based imputation models. The competitor models imputed using the raw format
of the data.

4.2 Model Architecture and Hyperparameters

Our Model architecture was different from a general CDA, where the Encoder
layer incorporates Deconvolution and Upsampling operations and the Decoder
layer incorporates Convolution and Maxpooling operations. The Encoder and
Decoder both have 3 layers. The table below demonstrates the structure of the
imputation model (Table 3).



Convolutional Denoising Autoencoder Based Imputation 9

Table 3. The architecture of CDA based imputation model

Operation Layer name Kernel size Number of feature maps

Encoder Upsampling up 0 (2, 2) −
Deconvolution deconv 0 (5, 5) 64

Upsampling up 1 (2, 2) −
Deconvolution deconv 1 (7, 7) 64

Upsampling up 2 (2, 2) −
Deconvolution deconv 2 (5, 6) 128

Decoder Convolution conv 0 (5, 6) 128

Maxpool pool 0 (2, 2) −
Convolution conv 1 (7, 7) 64

Maxpool pool 1 (2, 2) −
Convolution conv 2 (5, 5) 64

Maxpool pool 2 (2, 2) −

Hyperparameter specification was achieved by performing random search on
different random combinations of hyperparameter values and the root mean
square error (RMSE) was used to decide on the best combination. The random
search allowed us to avoid the exhaustive searching unlike grid search. Apply-
ing random search, we selected stochastic gradient descent (SGD) as optimizer,
which backpropagates the error to optimize the weights and biases. The number
of epochs was 100 and the batch size was 16.

4.3 Competitor Model’s Architecture and Hyperparameters

As competitor models, MICE and MLP based imputation models were selected.
MLP based model had 3 hidden layers and number of hidden units were 2/3 of
the number of input units in each layer. The hyperparameters for both of the
models were tuned by using random search.

Hyperbolic Tangent Function was selected as activation function with a
dropout of 0.3. Stochastic Gradient Descent operated as optimizer for 150 epochs
and with a batch size of 20.

MICE based imputation was demonstrated using Linear, Ridge and Lasso
regression and 10 iterations were performed for each of them.

4.4 Training

Based on the preprocessed data and model architecture described above, the
training is started. L2 regularization was used with weight of 0.01 and stochas-
tic gradient descent was used as the optimizer which outperformed Adam and
Adagrad optimizers. The whole training process was about learning to mini-
mize loss between the clean and corrupted data so that it can be applied on
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the unobserved data (noisy data after mean imputation) to perform imputation.
The training and validation split was 70% and 30%. Experiments show that, the
training and validation loss was saturated approximately after 10–15 epochs,
which was observed for most of the cases.

The training was conducted on a machine with Nvidia RTX 2060 with RAM
memory of 16 GB. The programming language for the training and all the steps
above was Python 3.7 and the operating system was Ubuntu 16.04 LTS.

4.5 Evaluation Criteria

As all the time series dataset contain continuous numeric values, Root Mean
Square Error (RMSE) was selected for evaluation. In out experimental setup,
RMSE is not calculated on overall time series but only missing data points are
taken into account to be compared with ground truth while calculating RMSE

RMSE =
√

1
mΣm

i=1(xi − x
′
i)2. Where m is the total number of missing time

points and I represents all the indices of missing values across the time series.

5 Results

Our proposed CDA based imputation model was compared with MLP and three
different versions of MICE, each using a different type of regression. Figure 4
presents the RMSE values for 20%, 30% 40% and 50% missingness.

Fig. 4. RMSE plots for different missing proportions
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The RMSE values for the CDA based model are the lowest at every percent-
age of missingness on the Handwriting, ArticularyWordRecognition, UWaveG-
estureLibrary and Cricket dataset. The depiction of the results on the Cricket
dataset is omitted due to space limitations. Unexpectedly, in StandWalkJump
dataset the performance of MLP and CDA model are very similar, and MLP is
even better at 30% missingness. MICE (Linear) and MICE (Ridge) are identi-
cal in imputation for all the datasets. MICE (Lasso) performed worst of all the
models, which implies that changing the regression type could potentially cause
an impact on the imputation quality. The MLP model beat all the MICE models
but was outperformed by the CDA model in at least for 80% of the cases.

6 Conclusion

In this work, we introduce an architecture of a Convolutional Denoising Autoen-
coder (CDA) adapted for multivariate time series imputation which inflates the
size of the hidden layers in the Encoder instead of reducing them. We also
employ a preprocessing step that turns the time series into 2D images based
on Gramian Angular Summation Fields in order to make the data more suitable
for our CDA. We compare our method against a standard Multi Layer Percep-
tron (MLP) and the state-of-the-art imputation method Multiple Imputations
by Chained Equations (MICE) with three different types of regression (Linear,
Ridge and Lasso). Our experiments were conducted on five different multivariate
time series datasets, for which we simulated 20%, 30%, 40% and 50% missingness
with data missing completely at random. Our results show that the CDA based
imputation outperforms MICE on all five datasets and also beats the MLP on
four datasets. On the fifth dataset CDA and MLP perform very similarly, but
CDA is still better on four out of the five degrees of missingness. Additionally we
present a preprocessing step on the datasets which manipulates the time series
lengths to generate more training samples for our model which led to a better
performance. The results show that the CDA model performs strongly against
both linear and non-linear regression based imputation models. Deep Learning
Networks are usually computationally more intensive than MICE but the impu-
tation quality of CDA was convincing enough to be chosen over MICE or MLP
based imputation.

In the future we plan to investigate also other types of missing data apart
from Missing Completely At Random (MCAR) and want to incorporate more
datasets as well as other deep learning based approaches for imputation.
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source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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