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Abstract. Manifold regularization is a commonly used technique in
semi-supervised learning. It enforces the classification rule to be smooth
with respect to the data-manifold. Here, we derive sample complexity
bounds based on pseudo-dimension for models that add a convex data
dependent regularization term to a supervised learning process, as is in
particular done in Manifold regularization. We then compare the bound
for those semi-supervised methods to purely supervised methods, and
discuss a setting in which the semi-supervised method can only have a
constant improvement, ignoring logarithmic terms. By viewing Manifold
regularization as a kernel method we then derive Rademacher bounds
which allow for a distribution dependent analysis. Finally we illustrate
that these bounds may be useful for choosing an appropriate manifold
regularization parameter in situations with very sparsely labeled data.

Keywords: Semi-supervised learning · Learning theory · Manifold
regularization

1 Introduction

In many applications, as for example image or text classification, gathering unla-
beled data is easier than gathering labeled data. Semi-supervised methods try
to extract information from the unlabeled data to get improved classification
results over purely supervised methods. A well-known technique to incorporate
unlabeled data into a learning process is manifold regularization (MR) [7,18].
This procedure adds a data-dependent penalty term to the loss function that
penalizes classification rules that behave non-smooth with respect to the data
distribution. This paper presents a sample complexity and a Rademacher com-
plexity analysis for this procedure. In addition it illustrates how our Rademacher
complexity bounds may be used for choosing a suitable Manifold regularization
parameter.

We organize this paper as follows. In Sects. 2 and 3 we discuss related work
and introduce the semi-supervised setting. In Sect. 4 we formalize the idea of
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adding a distribution-dependent penalty term to a loss function. Algorithms
such as manifold, entropy or co-regularization [7,14,21] follow this idea. Section 5
generalizes a bound from [4] to derive sample complexity bounds for the proposed
framework, and thus in particular for MR. For the specific case of regression,
we furthermore adapt a sample complexity bound from [1], which is essentially
tighter than the first bound, to the semi-supervised case. In the same section we
sketch a setting in which we show that if our hypothesis set has finite pseudo-
dimension, and we ignore logarithmic factors, any semi-supervised learner (SSL)
that falls in our framework has at most a constant improvement in terms of
sample complexity. In Sect. 6 we show how one can obtain distribution dependent
complexity bounds for MR. We review a kernel formulation of MR [20] and show
how this can be used to estimate Rademacher complexities for specific datasets.
In Sect. 7 we illustrate on an artificial dataset how the distribution dependent
bounds could be used for choosing the regularization parameter of MR. This is
particularly useful as the analysis does not need an additional labeled validation
set. The practicality of this approach requires further empirical investigation. In
Sect. 8 we discuss our results and speculate about possible extensions.

2 Related Work

In [13] we find an investigation of a setting where distributions on the input
space X are restricted to ones that correspond to unions of irreducible algebraic
sets of a fixed size k ∈ N, and each algebraic set is either labeled 0 or 1. A SSL
that knows the true distribution on X can identify the algebraic sets and reduce
the hypothesis space to all 2k possible label combinations on those sets. As we
are left with finitely many hypotheses we can learn them efficiently, while they
show that every supervised learner is left with a hypothesis space of infinite VC
dimension.

The work in [18] considers manifolds that arise as embeddings from a circle,
where the labeling over the circle is (up to the decision boundary) smooth.
They then show that a learner that has knowledge of the manifold can learn
efficiently while for every fully supervised learner one can find an embedding
and a distribution for which this is not possible.

The relation to our paper is as follows. They provide specific examples where
the sample complexity between a semi-supervised and a supervised learner are
infinitely large, while we explore general sample complexity bounds of MR and
sketch a setting in which MR can not essentially improve over supervised methods.

3 The Semi-supervised Setting

We work in the statistical learning framework: we assume we are given a feature
domain X and an output space Y together with an unknown probability distri-
bution P over X × Y. In binary classification we usually have that Y = {−1, 1},
while for regression Y = R. We use a loss function φ : R × Y → R, which is
convex in the first argument and in practice usually a surrogate for the 0–1 loss
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in classification, and the squared loss in regression tasks. A hypothesis f is a
function f : X → R. We set (X,Y ) to be a random variable distributed accord-
ing to P , while small x and y are elements of X and Y respectively. Our goal is
to find a hypothesis f , within a restricted class F , such that the expected loss
Q(f) := E[φ(f(X), Y )] is small. In the standard supervised setting we choose
a hypothesis f based on an i.i.d. sample Sn = {(xi, yi)}i∈{1,..,n} drawn from
P . With that we define the empirical risk of a model f ∈ F with respect to φ
and measured on the sample Sn as Q̂(f, Sn) = 1

n

∑n
i=1 φ(f(xi), yi). For ease of

notation we sometimes omit Sn and just write Q̂(f). Given a learning problem
defined by (P,F , φ) and a labeled sample Sn, one way to choose a hypothesis is
by the empirical risk minimization principle

fsup = arg min
f∈F

Q̂(f, Sn). (1)

We refer to fsup as the supervised solution. In SSL we additionally have samples
with unknown labels. So we assume to have n + m samples (xi, yi)i∈{1,..,n+m}
independently drawn according to P , where yi has not been observed for the
last m samples. We furthermore set U = {x1, ..., xxn+m}, so U is the set that
contains all our available information about the feature distribution.

Finally we denote by mL(ε, δ) the sample complexity of an algorithm L. That
means that for all n ≥ mL(ε, δ) and all possible distributions P the following
holds. If L outputs a hypothesis fL after seeing an n-sample, we have with
probability of at least 1 − δ over the n-sample Sn that Q(fL) − min

f∈F
Q(f) ≤ ε.

4 A Framework for Semi-supervised Learning

We follow the work of [4] and introduce a second convex loss function ψ : F×X →
R+ that only depends on the input feature and a hypothesis. We refer to ψ as
the unsupervised loss as it does not depend on any labels. We propose to add
the unlabeled data through the loss function ψ and add it as a penalty term to
the supervised loss to obtain the semi-supervised solution

fsemi = arg min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) + λ
1

n + m

n+m∑

j=1

ψ(f, xj), (2)

where λ > 0 controls the trade-off between the supervised and the unsupervised
loss. This is in contrast to [4], as they use the unsupervised loss to restrict the
hypothesis space directly. In the following section we recall the important insight
that those two formulations are equivalent in some scenarios and we can use [4]
to generate sample complexity bounds for the here presented SSL framework.

For ease of notation we set R̂(f, U) = 1
n+m

∑n+m
j=1 ψ(f, xj) and R(f) =

E[ψ(f,X)]. We do not claim any novelty for the idea of adding an unsupervised
loss for regularization. A different framework can be found in [11, Chapter 10].
We are, however, not aware of a deeper analysis of this particular formulation, as
done for example by the sample complexity analysis in this paper. As we are in
particular interested in the class of MR schemes we first show that this method
fits our framework.
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Example: Manifold Regularization. Overloading the notation we write now P (X)
for the distribution P restricted to X . In MR one assumes that the input dis-
tribution P (X) has support on a compact manifold M ⊂ X and that the
predictor f ∈ F varies smoothly in the geometry of M [7]. There are sev-
eral regularization terms that can enforce this smoothness, one of which is∫

M
||∇Mf(x)||2dP (x), where ∇Mf is the gradient of f along M . We know that∫

M
||∇Mf(x)||2dP (x) may be approximated with a finite sample of X drawn

from P (X) [6]. Given such a sample U = {x1, ..., xn+m} one defines first a
weight matrix W , where Wij = e−||xi−xj ||2/σ. We set L then as the Laplacian
matrix L = D − W , where D is a diagonal matrix with Dii =

∑n+m
j=1 Wij .

Let furthermore fU = (f(x1), ..., f(xn+m))t be the evaluation vector of f on
U . The expression 1

(n+m)2 f t
ULfU = 1

(n+m)2

∑
i,j(f(xi) − f(xj))2Wij converges

to
∫

M
||∇Mf ||2dP (x) under certain conditions [6]. This motivates us to set the

unsupervised loss as ψ(f, (xi, xj)) = (f(xi) − f(xj))2Wij . Note that f t
ULfU is

indeed a convex function in f : As L is a Laplacian matrix it is positive definite
and thus f t

ULfU defines a norm in f . Convexity follows then from the triangle
inequality.

5 Analysis of the Framework

In this section we analyze the properties of the solution fsemi found in Equation
(2). We derive sample complexity bounds for this procedure, using results from
[4], and compare them to sample complexities for the supervised case. In [4]
the unsupervised loss is used to restrict the hypothesis space directly, while we
use it as a regularization term in the empirical risk minimization as usually
done in practice. To switch between the views of a constrained optimization
formulation and our formulation (2) we use the following classical result from
convex optimization [15, Theorem 1].

Lemma 1. Let φ(f(x), y) and ψ(f, x) be functions convex in f for all x, y. Then
the following two optimization problems are equivalent:

min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) + λ
1

n + m

n+m∑

i=1

ψ(f, xi) (3)

min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) subject to
n+m∑

i=1

1
n + m

ψ(f, xi) ≤ τ (4)

Where equivalence means that for each λ we can find a τ such that both problems
have the same solution and vice versa.

For our later results we will need the conditions of this lemma are true, which
we believe to be not a strong restriction. In our sample complexity analysis we
stick as close as possible to the actual formulation and implementation of MR,
which is usually a convex optimization problem. We first turn to our sample
complexity bounds.



330 A. Mey et al.

5.1 Sample Complexity Bounds

Sample complexity bounds for supervised learning use typically a notion of com-
plexity of the hypothesis space to bound the worst case difference between the
estimated and the true risk. As our hypothesis class allows for real-valued func-
tions, we will use the notion of pseudo-dimension Pdim(F , φ), an extension of the
VC-dimension to real valued loss functions φ and hypotheses classes F [17,22].
Informally speaking, the pseudo-dimension is the VC-dimension of the set of
functions that arise when we threshold real-valued functions to define binary
functions. Note that sometimes the pseudo-dimension will have as input the loss
function, and sometimes not. This is because some results use the concatenation
of loss function and hypotheses to determine the capacity, while others only use
the hypotheses class. This lets us state our first main result, which is a gener-
alization of [4, Theorem 10] to bounded loss functions and real valued function
spaces.

Theorem 1. Let Fψ
τ := {f ∈ F | E[ψ(f, x)] ≤ τ}. Assume that φ, ψ are measur-

able loss functions such that there exists constants B1, B2 > 0 with ψ(f, x) ≤ B1

and φ(f(x), y) ≤ B2 for all x, y and f ∈ F and let P be a distribution. Further-
more let f∗

τ = arg min
f∈Fψ

τ

Q(f). Then an unlabeled sample U of size

m ≥ 8B1
2

ε2

[

ln
16
δ

+ 2Pdim(F , ψ) ln
4B1

ε
+ 1

]

(5)

and a labeled sample Sn of size

n ≥ max
(

8B2
2

ε2

[

ln
8
δ

+ 2Pdim(Fψ
τ+ ε

2
, φ) ln

4B2

ε
+ 1

]

,
h

4

)

(6)

is sufficient to ensure that with probability at least 1− δ the classifier g ∈ F that
minimizes Q̂(·, Sn) subject to R̂(·, U) ≤ τ + ε

2 satisfies

Q(g) ≤ Q(f∗
τ ) + ε. (7)

Sketch Proof: The idea is to combine three partial results with a union bound.
For the first part we use Theorem 5.1 from [22] with h = Pdim(F , ψ) to show
that an unlabeled sample size of

m ≥ 8B1
2

ε2

[

ln
16
δ

+ 2h ln
4B1

ε
+ 1

]

(8)

is sufficient to guarantee R̂(f)−R(f) < ε
2 for all f ∈ F with probability at least

1− δ
4 . In particular choosing f = f∗

τ and noting that by definition R(f∗
τ ) ≤ τ we

conclude that with the same probability

R̂(f∗
τ ) ≤ τ +

ε

2
. (9)
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For the second part we use Hoeffding’s inequality to show that the labeled sample
size is big enough that with probability at least 1 − δ

4 it holds that

Q̂(f∗
τ ) ≤ Q(f∗

τ ) + B2

√

ln(
4
δ
)

1
2n

. (10)

The third part again uses Th. 5.1 from [22] with h = Pdim(Fψ
τ , φ) to show that

n ≥ 8B2
2

ε2

[
ln 8

δ + 2h ln 4B2
ε + 1

]
is sufficient to guarantee Q(f) ≤ Q̂(f) + ε

2 with
probability at least 1 − δ

2 .
Putting everything together with the union bound we get that with proba-

bility 1 − δ the classifier g that minimizes Q̂(·,X, Y ) subject to R̂(·, U) ≤ τ + ε
2

satisfies

Q(g) ≤ Q̂(g) +
ε

2
≤ Q̂(f∗

τ ) +
ε

2
≤ Q(f∗

τ ) +
ε

2
+ B2

√

ln(4δ )
2n

. (11)

Finally the labeled sample size is big enough to bound the last rhs term by ε
2 . �

The next subsection uses this theorem to derive sample complexity bounds
for MR. First, however, a remark about the assumption that the loss function
φ is globally bounded. If we assume that F is a reproducing kernel Hilbert
space there exists an M > 0 such that for all f ∈ F and x ∈ X it holds that
|f(x)| ≤ M ||f ||F . If we restrict the norm of f by introducing a regularization
term with respect to the norm ||.||F , we know that the image of F is globally
bounded. If the image is also closed it will be compact, and thus φ will be
globally bounded in many cases, as most loss functions are continuous. This can
also be seen as a justification to also use an intrinsic regularization for the norm
of f in addition to the regularization by the unsupervised loss, as only then
the guarantees of Theorem 1 apply. Using this bound together with Lemma1 we
can state the following corollary to give a PAC-style guarantee for our proposed
framework.

Corollary 1. Let φ and ψ be convex supervised and an unsupervised loss func-
tion that fulfill the assumptions of Theorem1. Then fsemi (2) satisfies the guar-
antees given in Theorem1, when we replace for it g in Inequality (7).

Recall that in the MR setting R̂(f) = 1
(n+m)2

∑n+m
i=1 Wij(f(xi) − f(xj))2. So we

gather unlabeled samples from X × X instead of X . Collecting m samples from
X equates m2 − 1 samples from X × X and thus we only need

√
m instead of m

unlabeled samples for the same bound.

5.2 Comparison to the Supervised Solution

In the SSL community it is well-known that using SSL does not come without a
risk [11, Chapter 4]. Thus it is of particular interest how those methods compare
to purely supervised schemes. There are, however, many potential supervised
methods we can think of. In many works this problem is avoided by comparing
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to all possible supervised schemes [8,12,13]. The framework introduced in this
paper allows for a more fine-grained analysis as the semi-supervision happens
on top of an already existing supervised methods. Thus, for our framework, it
is natural to compare the sample complexities of fsup with the sample complex-
ity of fsemi. To compare the supervised and semi-supervised solution we will
restrict ourselves to the square loss. This allows us to draw from [1, Chapter 20],
where one can find lower and upper sample complexity bounds for the regres-
sion setting. The main insight from [1, Chapter 20] is that the sample complexity
depends in this setting on whether the hypothesis class is (closure) convex or
not. As we anyway need convexity of the space, which is stronger than closure
convexity, to use Lemma 1, we can adapt Theorem 20.7 from [1] to our semi-
supervised setting.

Theorem 2. Assume that Fψ
τ+ε is a closure convex class with functions mapping

to [0, 1]1, that ψ(f, x) ≤ B1 for all x ∈ X and f ∈ F and that φ(f(x), y) =
(f(x) − y)2. Assume further that there is a B2 > 0 such that (f(x) − y)2 < B2

almost surely for all (x, y) ∈ X × Y and f ∈ Fψ
τ+ε. Then an unlabeled sample

size of

m ≥ 2B1
2

ε2

[

ln
8
δ

+ 2Pdim(F , ψ) ln
2B1

ε
+ 2

]

(12)

and a labeled sample size of

n ≥ O
(

B2
2

ε

(

Pdim(Fψ
τ+ε) ln

√
B2

ε
+ ln

2
δ

))

(13)

is sufficient to guarantee that with probability at least 1 − δ the classifier g that
minimizes Q̂(·) w.r.t R̂(f) ≤ τ + ε satisfies

Q(g) ≤ min
f∈Fψ

τ

Q(f) + ε. (14)

Proof: As in the proof of Theorem 1 the unlabeled sample size is sufficient to
guarantee with probability at least 1− δ

2 that R(f∗
τ ) ≤ τ + ε. The labeled sample

size is big enough to guarantee with at least 1 − δ
2 that Q(g) ≤ Q(f∗

τ+ε) + ε
[1, Theorem 20.7]. Using the union bound we have with probability of at least
1 − δ that Q(g) ≤ Q(f∗

τ+ε) + ε ≤ Q(f∗
τ ) + ε. �

Note that the previous theorem of course implies the same learning rate in
the supervised case, as the only difference will be the pseudo-dimension term.
As in specific scenarios this is also the best possible learning rate, we obtain the
following negative result for SSL.

Corollary 2. Assume that φ is the square loss, F maps to the interval [0, 1]
and Y = [1 − B,B] for a B ≥ 2. If F and Fψ

τ are both closure convex, then
for sufficiently small ε, δ > 0 it holds that msup(ε, δ) = Õ(msemi(ε, δ)), where

1 In the remarks after Theorem 1 we argue that in many cases |f(x)| is bounded, and
in those cases we can always map to [0,1] by re-scaling.
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Õ suppresses logarithmic factors, and msemi,msup denote the sample complexity
of the semi-supervised and the supervised learner respectively. In other words,
the semi-supervised method can improve the learning rate by at most a constant
which may depend on the pseudo-dimensions, ignoring logarithmic factors. Note
that this holds in particular for the manifold regularization algorithm.

Proof: The assumptions made in the theorem allow is to invoke Equation (19.5)
from [1] which states that msemi = Ω( 1ε + Pdim(Fψ

τ )).2 Using Inequality (13)
as an upper bound for the supervised method and comparing this to Eq. (19.5)
from [1] we observe that all differences are either constant or logarithmic in ε
and δ. �

5.3 The Limits of Manifold Regularization

We now relate our result to the conjectures published in [19]: A SSL cannot learn
faster by more than a constant (which may depend on the hypothesis class F and
the loss φ) than the supervised learner. Theorem 1 from [12] showed that this
conjecture is true up to a logarithmic factor, much like our result, for classes with
finite VC-dimension, and SSL that do not make any distributional assumptions.
Corollary 2 shows that this statement also holds in some scenarios for all SSL
that fall in our proposed framework. This is somewhat surprising, as our result
holds explicitly for SSLs that do make assumptions about the distribution: MR
assumes the labeling function behaves smoothly w.r.t. the underlying manifold.

6 Rademacher Complexity of Manifold Regularization

In order to find out in which scenarios semi-supervised learning can help it is
useful to also look at distribution dependent complexity measures. For this we
derive computational feasible upper and lower bounds on the Rademacher com-
plexity of MR. We first review the work of [20]: they create a kernel such that
the inner product in the corresponding kernel Hilbert space contains automati-
cally the regularization term from MR. Having this kernel we can use standard
upper and lower bounds of the Rademacher complexity for RKHS, as found
for example in [10]. The analysis is thus similar to [21]. They consider a co-
regularization setting. In particular [20, p. 1] show the following, here informally
stated, theorem.

Theorem 3 ([20, Propositions 2.1, 2.2]). Let H be a RKHS with inner prod-
uct 〈·, ·〉H . Let U = {x1, ..., xn+m}, f, g ∈ H and fU = (f(x1), ..., f(xn+m))t.
Furthermore let 〈·, ·〉Rn be any inner product in R

n. Let H̃ be the same space of
functions as H, but with a newly defined inner product by 〈f, g〉H̃ = 〈f, g〉H +
〈fU , gU 〉Rn . Then H̃ is a RKHS.

2 Note that the original formulation is in terms of the fat-shattering dimension, but
this is always bounded by the pseudo-dimension.
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Assume now that L is a positive definite n-dimensional matrix and we set
the inner product 〈fU , gU 〉Rn = f t

ULgU . By setting L as the Laplacian matrix
(Sect. 4) we note that the norm of H̃ automatically regularizes w.r.t. the data
manifold given by {x1, ..., xn+m}. We furthermore know the exact form of the
kernel of H̃.

Theorem 4 ([20, Proposition 2.2]). Let k(x, y) be the kernel of H, K be
the gram matrix given by Kij = k(xi, xj) and kx = (k(x1, x), ..., k(xn+m, x))t.
Finally let I be the n + m dimensional identity matrix. The kernel of H̃ is then
given by k̃(x, y) = k(x, y) − kt

x(I + LK)−1Lky.

This interpretation of MR is useful to derive computationally feasible upper and
lower bounds of the empirical Rademacher complexity, giving distribution depen-
dent complexity bounds. With σ = (σ1, ..., σn) i.i.d Rademacher random vari-
ables (i.e. P (σi = 1) = P (σi = −1) = 1

2 .), recall that the empirical Rademacher
complexity of the hypothesis class H and measured on the sample labeled input
features {x1, ..., xn} is defined as

Radn(H) =
1
n
Eσ sup

f∈H

n∑

i=1

σif(xi). (15)

Theorem 5 ([10, p. 333]). Let H be a RKHS with kernel k and Hr = {f ∈
H | ||f ||H ≤ r}. Given an n sample {x1, ..., xn} we can bound the empirical
Rademacher complexity of Hr by

r

n
√

2

√
√
√
√

n∑

i=1

k(xi, xi) ≤ Radn(Hr) ≤ r

n

√
√
√
√

n∑

i=1

k(xi, xi). (16)

The previous two theorems lead to upper bounds on the complexity of MR, in
particular we can bound the maximal reduction over supervised learning.

Corollary 3. Let H be a RKHS and for f, g ∈ H define the inner product
〈f, g〉H̃ = 〈f, g〉H + fU (μL)gt

U , where L is a positive definite matrix and μ ∈ R

is a regularization parameter. Let H̃r be defined as before, then

Radn(H̃r) ≤ r

n

√
√
√
√

n∑

i=1

k(xi, xi) − kt
xi

(
1
μ

I + LK)−1Lkxi
. (17)

Similarly we can obtain a lower bound in line with Inequality (16).

The corollary shows in particular that the difference of the Rademacher com-
plexity of the supervised and the semi-supervised method is given by the term
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kt
xi

( 1
μIn+m + LK)−1Lkxi

. This can be used for example to compute general-
ization bounds [17, Chapter 3]. We can also use the kernel to compute local
Rademacher complexities which may yield tighter generalization bounds [5]. Here
we illustrate the use of our bounds for choosing the regularization parameter μ
without the need for an additional labeled validation set.

7 Experiment: Concentric Circles

We illustrate the use of Eq. (17) for model selection. In particular, it can be
used to get an initial idea of how to choose the regularization parameter μ. The
idea is to plot the Rademacher complexity versus the parameter μ as in Fig. 1.
We propose to use an heuristic which is often used in clustering, the so called
elbow criteria [9]. We essentially want to find a μ such that increasing the μ will
not result in much reduction of the complexity anymore. We test this idea on a
dataset which consists out of two concentric circles with 500 datapoints in R

2,
250 per circle, see also Fig. 2. We use a Gaussian base kernel with bandwidth set
to 0.5. The MR matrix L is the Laplacian matrix, where weights are computed
with a Gaussian kernel with bandwidth 0.2. Note that those parameters have
to be carefully set in order to capture the structure of the dataset, but this is
not the current concern: we assume we already found a reasonable choice for
those parameters. We add a small L2-regularization that ensures that the radius
r in Inequality (17) is finite. The precise value of r plays a secondary role as the
behavior of the curve from Fig. 1 remains the same.

Looking at Fig. 1 we observe that for μ smaller than 0.1 the curve still drops
steeply, while after 0.2 it starts to flatten out. We thus plot the resulting kernels
for μ = 0.02 and μ = 0.2 in Fig. 2. We plot the isolines of the kernel around the
point of class one, the red dot in the figure. We indeed observe that for μ = 0.02
we don’t capture that much structure yet, while for μ = 0.2 the two concentric
circles are almost completely separated by the kernel. If this procedure indeed
elevates to a practical method needs further empirical testing.
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Fig. 1. The behavior of the Rademacher complexity when using manifold regularization
on circle dataset with different regularization values µ.
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Fig. 2. The resulting kernel when we use manifold regularization with parameter µ set
to 0.02 and 0.2.

8 Discussion and Conclusion

This paper analysed improvements in terms of sample or Rademacher complexity
for a certain class of SSL. The performance of such methods depends both on
how the approximation error of the class F compares to that of Fψ

τ and on the
reduction of complexity by switching from the first to the latter. In our analysis
we discussed the second part. The first part depends on a notion the literature
often refers to as a semi-supervised assumption. This assumption basically states
that we can learn with Fψ

τ as good as with F . Without prior knowledge, it is
unclear whether one can test efficiently if the assumption is true or not. Or is
it possible to treat just this as a model selection problem? The only two works
we know that provide some analysis in this direction are [3], which discusses
the sample consumption to test the so-called cluster assumption, and [2], which
analyzes the overhead of cross-validating the hyper-parameter coming from their
proposed semi-supervised approach.

As some of our settings need restrictions, it is natural to ask whether we can
extend the results. First, Lemma 1 restricts us to convex optimization problems.
If that assumption would be unnecessary, one may get interesting extensions.
Neural networks, for example, are typically not convex in their function space
and we cannot guarantee the fast learning rate from Theorem2. But maybe there
are semi-supervised methods that turn this space convex, and thus could achieve
fast rates. In Theorem 2 we have to restrict the loss to be the square loss, and
[1, Example 21.16] shows that for the absolute loss one cannot achieve such a
result. But whether Theorem 2 holds for the hinge loss, which is a typical choice
in classification, is unknown to us. We speculate that this is indeed true, as at
least the related classification tasks, that use the 0–1 loss, cannot achieve a rate
faster than 1

ε [19, Theorem 6.8].
Corollary 2 sketches a scenario in which sample complexity improvements of

MR can be at most a constant over their supervised counterparts. This may sound
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like a negative result, as other methods with similar assumptions can achieve expo-
nentially fast learning rates [16, Chapter 6]. But constant improvement can still
have significant effects, if this constant can be arbitrarily large. If we set the reg-
ularization parameter μ in the concentric circles example high enough, the only
possible classification functions will be the one that classifies each circle uniformly
to one class. At the same time the pseudo-dimension of the supervised model can
be arbitrarily high, and thus also the constant in Corollary 2. In conclusion, one
should realize the significant influence constant factors in finite sample settings
can have.
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