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Abstract. Graph neural networks (GNNs) have known an increasing
success recently, with many GNN variants achieving state-of-the-art
results on node and graph classification tasks. The proposed GNNs,
however, often implement complex node and graph embedding schemes,
which makes it challenging to explain their performance. In this paper,
we investigate the link between a GNN’s expressiveness, that is, its abil-
ity to map different graphs to different representations, and its gener-
alization performance in a graph classification setting. In particular, we
propose a principled experimental procedure where we (i) define a prac-
tical measure for expressiveness, (ii) introduce an expressiveness-based
loss function that we use to train a simple yet practical GNN that is
permutation-invariant, (iii) illustrate our procedure on benchmark graph
classification problems and on an original real-world application. Our
results reveal that expressiveness alone does not guarantee a better per-
formance, and that a powerful GNN should be able to produce graph
representations that are well separated with respect to the class of the
corresponding graphs.
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1 Introduction

Many real-world data present an inherent structure and can be modelled as
sequences, graphs, or hypergraphs [2,5,9,15]. Graph-structured data, in partic-
ular, are very common in practice and are at the heart of this work.

We consider the problem of graph classification. That is, given a set
G = {Gi}m

i=1 of arbitrary graphs and their respective labels {yi}m
i=1, where

yi ∈ {1, . . . , C} and C is the number of classes, we aim at finding a mapping
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fθ : G → {1, . . . , C} that minimizes the classification error, where θ denotes the
parameters to optimize.

Graph neural networks (GNNs) and their deep learning variants, the graph
convolutional networks (GCNs) [1,7,9,10,13,17,20,27], have gained consider-
able interest recently. GNNs learn latent node representations by recursively
aggregating the neighboring node features for each node, thereby capturing the
structural information of a node’s neighborhood.

Despite the profusion of GNN variants, some of which achieve state-of-the-art
results on tasks like node classification, graph classification, and link prediction,
GNNs remain very little studied. In particular, it is often unclear what a GNN
learns and how the learned graph (or node) mapping influences its generalization
performance. In a recent work, [25] present a theoretical framework to analyze
the expressive power of GNNs, where a GNN’s expressiveness is defined as its
ability to compute different graph representations for different graphs. Theoreti-
cal conditions under which a GNN is maximally expressive are derived. Although
it is reasonable to assume that a higher expressiveness would result in a higher
accuracy on classification tasks, this link has not been explicitly studied so far.

In this paper, we design a principled experimental procedure to analyze the
link between expressiveness and the test accuracy of GNNs. In particular:

– We define a practical measure to estimate the expressiveness of GNNs;
– We use this measure to define a new penalized loss function that allows train-

ing GNNs with varying expressive power.

To illustrate our experimental framework, we introduce a simple yet practical
architecture, the Simple Permutation-Invariant Graph Convolutional Network
(SPI-GCN). We also present an original graph data set of metal hydrides that
we use along with benchmark graph data sets to evaluate SPI-GCN.

This paper is organized as follows. Section 2 discusses the related work.
Section 3 introduces preliminary notations and concepts related to graphs and
GNNs. In Sect. 4, we introduce our graph neural network, SPI-GCN. In Sect. 5,
we present a practical expressiveness estimator and a new expressiveness-based
loss function as part of our experimental framework. Section 6 presents our
results and Sect. 7 concludes the paper.

2 Related Work

Graph neural networks (GNNs) were first introduced in [11,19]. They learn latent
node representations by iteratively aggregating neighborhood information for
each node. Their more recent deep learning variants, the graph convolutional
networks (GCNs), generalize conventional convolutional neural networks to irreg-
ular graph domains. In [13], the authors present a GCN for node classification
where the computed node representations can be interpreted as the graph col-
oring returned by the 1-dimensional Weisfeiler-Lehman (WL) algorithm [24]. A
related GCN that is invariant to node permutation is presented in [27]. The graph
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convolution operator is closely related to the one in [13], and the authors intro-
duce a permutation-invariant pooling operator that sorts the convolved nodes
before feeding them to a 1-dimensional classical convolution layer for graph-level
classification. A popular GCN is Patchy-san [17]. Its graph convolution oper-
ator extracts normalized local “patches” (neighborhood representations) of the
graph which are then sorted and fed to a 1-dimensional traditional convolution
layer for graph-level classification. The method, however, requires the definition
of a node ordering and running the WL algorithm in a preprocessing step. On
the other hand, the normalization of the extracted patches implies sorting the
nodes again and using the external graph software Nauty [14].

Despite the success of GNNs, there are relatively few papers that analyze
their properties, either mathematically or empirically. A notable exception is the
recent work by [25] that studies the expressive power of GNNs. The authors prove
that (i) GNNs are at most as powerful as the WL test in distinguishing graph
structures and that (ii) if the graph function of a GNN—i.e. its graph embedding
scheme—is injective, then the GNN is as powerful as the WL test. The authors
also present the Graph Isomorphism Network (GIN), which approximates the
theoretical maximally expressive GNN. In another study [4], the authors present
a simple neural network defined on a set of graph augmented features and show
that their architecture can be obtained by linearizing graph convolutions in
GNNs.

Our work is related to [25] in that we adopt the same definition of expres-
siveness, that is, the ability of a GNN to compute distinct graph representations
for distinct input graphs. However, we go one step further and investigate how
the graph function learned by GNNs affects their generalization performance.
On the other hand, our SPI-GCN extends the GCN in [13] to graph-level clas-
sification. Our SPI-GCN is also related to [27] in that we use a similar graph
convolution operator inspired by [13]. Unlike [27], however, our architecture does
not require any node ordering, and we only use a simple multilayer perceptron
(MLP) to perform classification.

3 Some Graph Concepts

A graph G is a pair (V,E) of a set V = {v1, . . . , vn} of vertices (or nodes) vi, and
a set E ⊆ V × V of edges (vi, vj). In this work, we represent a graph G by two
matrices: (i) an adjacency matrix A ∈ R

n×n such that aij = 1 if there is an edge
between nodes vi and vj and aij = 0 otherwise,1 and (ii) a node feature matrix
X ∈ R

n×d, with d being the number of node features. Each row xi ∈ R
d of X

contains the feature representation of a node vi, where d is the dimension of the
feature space. Since we only consider node features in this paper (as opposed to
edge features for instance), we will refer to the node feature matrix X simply as
the feature matrix in the rest of this paper.
1 Given a matrix M, mi denotes its ith row and mij denotes the entry at its ith row

and jth column. More generally, we denote matrices by capital letters and vectors
by small letters. Scalars, on the other hand, are denoted by small italic letters.
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An important notion in graph theory is graph isomorphism. Two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection
g : V1 → V2 such that every edge (u, v) is in E1 if and only if the edge (g(u), g(v))
is in E2. Informally, this definition states that two graphs are isomorphic if there
exists a vertex permutation such that when applied to one graph, we recover the
vertex and edge sets of the other graph.

3.1 Graph Neural Networks

Consider a graph G with adjacency matrix A and feature matrix X. GNNs
use the graph structure (A) and the node features (X) to learn a node-level or
a graph-level representation—or embedding—of G. GNNs iteratively update a
node representation by aggregating its neighbors’ representations. At iteration l,
a node representation captures its l-hop neighborhood’s structural information.
Formally, the lth layer of a general GNN can be defined as follows:

al+1
i = AGGREGATEl({zl

j : j ∈ N(i)}) (1)

zl+1
i = COMBINEl(zl

i, a
l+1
i ) , (2)

where zl+1
i is the feature vector of node vi at layer l and where z0i = xi. While

COMBINE usually consists in concatenating node representations from different
layers, different—and often complex—architectures for AGGREGATE have been
proposed. In [13], the presented GCN merges the AGGREGATE and COMBINE
functions as follows:

zl+1
i = ReLU

(
mean({zl

j : j ∈ N(i) ∪ {i}}) · Wl
)

, (3)

where ReLU is a rectified linear unit and Wl is a trainable weight matrix. GNNs
for graph classification have an additional module that aggregates the node-level
representations to produce a graph-level one as follows:

zG = READOUT({zL
i : vi ∈ V }) , (4)

for a GNN with L layers. In [25], the authors discuss the impact that the choice
of AGGREGATEl, COMBINEl, and READOUT has on the so-called expres-
siveness of the GNN, that is, its ability to map different graphs to different
embeddings. They present theoretical conditions under which a GNN is maxi-
mally expressive.

We now present a simple yet practical GNN architecture on which we illus-
trate our experimental framework.

4 Simple Permutation-Invariant Graph Convolutional
Network (SPI-GCN)

Our Simple Permutation-Invariant Graph Convolutional Network (SPI-GCN)
consists of the following sequential modules: (1) a graph convolution module
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that encodes local graph structure and node features in a substructure feature
matrix whose rows represent the nodes of the graph, (2) a sum-pooling layer as
a READOUT function to produce a single-vector representation of the input
graph, and (3) a prediction module consisting of dense layers that reads the
vector representation of the graph and outputs predictions.

Let G be a graph represented by the adjacency matrix A ∈ R
n×n and the

feature matrix X ∈ R
n×d, where n and d represent the number of nodes and

the dimension of the feature space respectively. Without loss of generality, we
consider graphs without self-loops.

4.1 Graph Convolution Module

Given a graph G with its adjacency and feature matrices, A and X, we define
the first convolution layer as follows:

Z = f(D̂
−1

ÂXW) , (5)

where Â = A + In is the adjacency matrix of G with added self-loops, D̂ is the
diagonal node degree matrix of Â,2 W ∈ R

d×d′
is a trainable weight matrix, f is

a nonlinear activation function, and Z ∈ R
n×d′

is the convolved graph. To stack
multiple convolution layers, we generalize the propagation rule in (5) as follows:

Zl+1 = f l(D̂
−1

ÂZlWl) , (6)

where Z0 = X, Zl is the output of the lth convolution layer, Wl is a trainable
weight matrix, and f l is the nonlinear activation function applied at layer l.
Similarly to the GCN presented in [13] from which we draw inspiration, our
graph convolution module merges the AGGREGATE and COMBINE functions
(see (1) and (2)), and we can rewrite (6) as:

zl+1
i = f l

(
mean({zl

j : j ∈ N(i) ∪ {i}}) · Wl
)

, (7)

where zt+1
i is the ith row of Zl+1.

We return the result of the last convolution layer, that is, for a network with
L convolution layers, the result of the convolution is the last substructure feature
matrix ZL. Note that (6) is able to process graphs with varying node numbers.

4.2 Sum-Pooling Layer

The sum-pooling layer produces a graph-level representation zG by summing the
rows of ZL, previously returned by the convolution module. Formally:

zG =
n∑

i=1

zL
i . (8)

2 If G is a directed graph, D̂ corresponds to the outdegree diagonal matrix of Â.
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The resulting vector zG ∈ R
dL contains the final vector representation (or embed-

ding) of the input graph G in a dL-dimensional space. This vector representation
is then used for prediction—graph classification in our case.

Using a sum pooling operator is a simple idea that has been used in GNNs
such as [1,21]. Additionally, it results in the invariance of our architecture to
node permutation, as stated in Theorem 1.

Theorem 1. Let G and Gς be two arbitrary isomorphic graphs. The sum-pooling
layer of SPI-GCN produces the same vector representation for G and Gς .

This invariance property is crucial for GNNs as it ensures that two isomorphic—
and hence equivalent—graphs will result in the same output. The proof of The-
orem 1 is straightforward and omitted for space limitations.

4.3 Prediction Module

The prediction module of SPI-GCN is a simple MLP that takes as input the
graph-level representation zG returned by the sum-pooling layer and returns
either: (i) a probability p in case of binary classification or (ii) a vector p of
probabilities such that

∑
i pi = 1 in case of multi-class classification.

Note that SPI-GCN can be trained in an end-to-end fashion through back-
propagation. Additionally, since only one graph is treated in a forward pass, the
training complexity of SPI-GCN is linear in the number of graphs.

In the next section, we describe a practical methodology for studying the
expressiveness of SPI-GCN and its connection to the generalization performance
of the algorithm.

5 Investigating Expressiveness of SPI-GCN

We start here by introducing a practical definition of expressiveness. We then
show how the defined measure can be used to train SPI-GCN and help under-
stand the impact expressiveness has on its generalization performance.

5.1 Practical Measure of Expressiveness

The expressiveness of a GNN, as defined in [25], is its ability to map different
graph structures to different embeddings and, therefore, reflects the injectivity
of its graph embedding function. Since studying injectivity can be tedious, we
characterize expressiveness—and hence injectivity—as a function of the pairwise
distance between graph embeddings.

Let {zGi
}m

i=1 be the set of graph embeddings computed by a GNN A for
a given input graph data set {Gi}m

i=1. We define A’s expressiveness, E(A), as
follows:

E(A) = mean({||zGi
− zGj

||2 : i, j = 1, . . . , m, i �= j}) , (9)

that is, E(A) is the average pairwise Euclidean distance between graph embed-
dings produced by A. While not strictly equivalent to injectivity, E is a reasonable
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indicator thereof, as the average pairwise distance reflects the diversity within
graph representations which, in turn, is expected to be higher for more diverse
input graph data sets. For permutation-invariant GNNs like SPI-GCN,3 E is zero
when all graphs {Gi}m

i=1 are isomorphic.

5.2 Penalized Cross Entropy Loss

We train SPI-GCN using a penalized cross entropy loss, Lp, that consists of a
classical cross entropy augmented with a penalty term defined as a function of
the expressiveness of SPI-GCN. Formally:

Lp = cross-entropy({yi}m
i=1, {ŷi}m

i=1) − α · E(SPI-GCN) , (10)

where {yi}m
i=1 (resp. {ŷi}m

i=1) is the set of real (resp. predicted) graph labels, α
is a non-negative penalty factor, and E is defined in (9) with {zGi

}m
i=1 being the

graph embeddings computed by SPI-GCN.
By adding the penalty term −α · E(SPI-GCN) in Lp, the expressiveness is

maximized while the cross entropy is minimized during the training process.
The penalty factor α controls the importance attributed to E(SPI-GCN) when
Lp is minimized. Consequently, higher values of α allow to train more expressive
variants of SPI-GCN whereas for α = 0, only the cross entropy is minimized.

In the next section, we assess the performance of SPI-GCN for different values
of α. We also compare SPI-GCN with other more complex GNN architectures,
including the state-of-the-art method.

6 Experiments

We carry out a first set of experiments where we compare our approach, SPI-
GCN, with two recent GCNs. In a second set of experiments, we train different
instances of SPI-GCN with increasing values of the penalty factor α (see (10))
in an attempt to understand how the expressiveness of SPI-GCN affects its test
accuracy, and whether it is the determining factor of its generalization perfor-
mance, as implicitly suggested in [25]. Our code and data are available at https://
github.com/asmaatamna/SPI-GCN.

6.1 Data Sets

We use nine public benchmark data sets including five bioinformatics data sets
(MUTAG [6], PTC [22], ENZYMES [3], NCI1 [23], PROTEINS [8]), two social
network data sets (IMDB-BINARY, IMDB-MULTI [26]), one image data set
where images are represented as region adjacency graphs (COIL-RAG [18]), and
one synthetic data set (SYNTHIE [16]). We also evaluate SPI-GCN on an original
real-world data set collected at the ICMPE,4 HYDRIDES, that contains metal
hydrides in graph format, labelled as stable or unstable according to specific
energetic properties that determine their ability to store hydrogen efficiently.
3 As mentioned previously, we state that permutation-invariance is a minimal require-

ment for any practical GNN.
4 East Paris Institute of Chemistry and Materials Science, France.

https://github.com/asmaatamna/SPI-GCN
https://github.com/asmaatamna/SPI-GCN
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6.2 Architecture of SPI-GCN

The instance of SPI-GCN that we use for experiments has two graph convolution
layers of 128 and 32 hidden units respectively, followed by a hyperbolic tangent
function and a softmax function (per node) respectively. The sum-pooling layer
is a classical sum applied row-wise; it is followed by a prediction module con-
sisting of a MLP with one hidden layer of 256 hidden units followed by a batch
normalization layer and a ReLU. We choose this architecture by trial and error
and keep it unchanged throughout the experiments.

6.3 Comparison with Other Methods

In these experiments, we consider the simplest variant of SPI-GCN where the
penalty term in (10) is discarded by setting α = 0. That is, the algorithm is
trained using only the cross entropy loss.

Baselines. We compare SPI-GCN with the well-known GCN, Patchy-san
(PSCN) [17], the Deep Graph Convolutional Neural Network (Dgcnn) [27] that
uses a similar convolution module to ours, and the recent state-of-the-art Graph
Isomorphism Network (GIN) [25].

Experimental Procedure. We train SPI-GCN using full batch Adam opti-
mizer [12], with cross entropy as the loss function to minimize (α = 0 in (10)).
Upon experimentation, we set Adam’s hyperparameters as follows. The algo-
rithm is trained for 200 epochs on all data sets and the learning rate is set
to 10−3. To estimate the accuracy, we perform 10-fold cross validation using 9
folds for training and one fold for testing each time. We report the average (test)
accuracy and the corresponding standard deviation in Table 1. Note that we only
use node attributes in our experiments. In particular, SPI-GCN does not exploit
node or edge labels of the data sets. When node attributes are not available, we
use the identity matrix as the feature matrix for each graph.

We follow the same procedure for Dgcnn. We use the authors’ implemen-
tation5 and perform 10-fold cross validation with the recommended values for
training epochs, learning rate, and SortPooling parameter k, for each data set.

For PSCN, we report the results from the original paper [17] (for receptive
field size k = 10) as we could not find an authors’ public implementation of the
algorithm. The experiments were conducted using a similar procedure as ours.

For GIN, we also report the published results [25] (GIN-0 in the paper), as
it was not straightforward to use the authors’ implementation.

Results. Table 1 shows the results for our algorithm (SPI-GCN), Dgcnn [27],
PSCN [17], and the state-of-the-art GIN [25]. We observe that SPI-GCN is highly
competitive with other algorithms despite using the same architecture for all
data sets. The only noticeable exceptions are on the NCI1 and IMDB-BINARY
data sets, where the best approach (GIN) is up to 1.28 times better. On the
other hand, SPI-GCN appears to be highly competitive on classification tasks

5 https://github.com/muhanzhang/pytorch DGCNN.

https://github.com/muhanzhang/pytorch_DGCNN
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with more than 3 classes (ENZYMES, COIL-RAG, SYNTHIE). The difference in
accuracy is particularly significant on COIL-RAG (100 classes), where SPI-GCN
is around 34 times better than Dgcnn, suggesting that the features extracted
by SPI-GCN are more suitable to characterize the graphs at hand. SPI-GCN
also achieves a very reasonable accuracy on the HYDRIDES data set and is 1.06
times better than Dgcnn on ENZYMES.

The results in Table 1 show that despite its simplicity, SPI-GCN is com-
petitive with other practical graph algorithms and, hence, it is a reasonable
architecture to consider for our next set of experiments involving expressiveness.

Table 1. Accuracy results for SPI-GCN and three other deep learning methods
(Dgcnn, PSCN, GIN).

Algorithm SPI-GCN Dgcnn PSCN GIN

MUTAG 84.40 ± 8.14 86.11 ± 7.14 88.95 ± 4.37 89.4± 5.6

PTC 56.41 ± 5.71 55.00 ± 5.10 62.29 ± 5.68 64.6± 7.0

NCI1 64.11 ± 2.37 72.73 ± 1.56 76.34 ± 1.68 82.7± 1.7

PROTEINS 72.06 ± 3.18 72.79 ± 3.58 75.00 ± 2.51 76.2± 2.8

ENZYMES 50.17± 5.60 47.00 ± 8.36 − −
IMDB-BINARY 60.40 ± 4.15 68.60 ± 5.66 71.00 ± 2.29 75.1± 5.1

IMDB-MULTI 44.13 ± 4.61 45.20 ± 3.75 45.23 ± 2.84 52.3± 2.8

COIL-RAG 74.38± 2.42 2.21 ± 0.33 − −
SYNTHIE 71.00± 6.44 54.25 ± 4.34 − −
HYDRIDES 82.75 ± 2.67 − − −

6.4 Expressiveness Experiments

Through these experiments, we try to answer the following questions:

– Do more expressive GNNs perform better on graph classification tasks? That
is, is the injectivity of a GNN’s graph function the determining factor of its
performance?

– Can the performance be explained by another factor? If yes, what is it?

To this end, we train increasingly injective instances of SPI-GCN on the penal-
ized cross entropy loss Lp (10) by setting the penalty factor α to increasingly
large values. Then, for each trained instance, we investigate (i) its test accu-
racy, (ii) its expressiveness E(SPI-GCN) (9), and (iii) the average normalized
Inter-class Graph Embedding Distance (IGED), defined as the average pairwise
Euclidean distance between mean graph embeddings taken class-wise divided by
E(SPI-GCN). Formally:

IGED =
mean({||z∗

c − z∗
c′ ||2 : c, c′ = 1, . . . , C, c �= c′})
E(SPI-GCN)

, (11)
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Table 2. Expressiveness experiments results. SPI-GCN is trained on the penalized
cross entropy loss, Lp, with increasing values of the penalty factor α. For each data set,
and for each value of α, we report the test accuracy (a), the expressiveness E(SPI-GCN)
(b), and the IGED (c). Highlighted are the maximal values for each quantity.

α 0 10−3 10−1 1 10

MUTAG 84.40± 8.14 84.40± 8.14 86.07± 9.03 82.56± 7.33 81.45± 6.68 (a)

0.09± 0.01 0.09± 0.01 0.12± 0.01 5.96± 1.08 6.32± 0.76 (b)

0.68± 0.16 0.68± 0.16 0.82± 0.18 1.21± 0.23 1.20± 0.22 (c)

PTC 56.41± 5.71 54.97± 6.05 54.64± 6.33 57.88± 8.65 58.70± 7.40 (a)

0.09± 0.01 0.09± 0.01 0.11± 0.01 8.41± 3.13 9.03± 2.94 (b)

0.26± 0.05 0.26± 0.05 0.26± 0.06 0.41± 0.22 0.42± 0.22 (c)

NCI1 64.11± 2.37 64.21± 2.36 64.01± 2.87 63.48± 1.36 63.19± 1.72 (a)

0.09± 0.004 0.09± 0.005 1.07± 0.19 16.83± 0.49 16.91± 0.52 (b)

0.18± 0.02 0.19± 0.03 0.59± 0.05 0.62± 0.05 0.62± 0.05 (c)

PROTEINS 72.06± 3.18 71.78± 3.55 71.51± 3.26 70.97± 3.49 71.42± 3.23 (a)

5.89± 1.34 13.07± 3.21 35.88± 4.89 35.88± 4.89 35.88± 4.89 (b)

0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 (c)

ENZYMES 50.17± 5.60 50.17± 5.60 29.33± 5.93 29.33± 5.54 29.33± 5.88 (a)

0.79± 0.21 1.85± 0.64 23.22± 2.99 23.33± 3.02 23.35± 3.01 (b)

0.44± 0.06 0.42± 0.10 0.42± 0.10 0.42± 0.10 0.42± 0.10 (c)

IMDB-BIN. 60.40± 4.15 61.70± 4.96 61.10± 3.75 54.40± 3.10 54.20± 5.15 (a)

0.12± 0.01 0.12± 0.01 0.16± 0.01 12.43± 2.37 11.70± 2.89 (b)

0.15± 0.03 0.15± 0.03 0.15± 0.03 0.12± 0.08 0.12± 0.08 (c)

IMDB-MUL. 44.13± 4.61 44.60± 5.41 44.80± 4.51 39.73± 4.34 38.87± 4.42 (a)

0.08± 0.01 0.08± 0.01 0.64± 0.14 10.38± 1.05 9.91± 1.15 (b)

0.16± 0.02 0.16± 0.02 0.16± 0.09 0.15± 0.09 0.15± 0.09 (c)

COIL-RAG 74.38± 2.42 74.38± 2.45 72.49± 3.21 52.08± 4.89 28.72± 3.62 (a)

0.08± 0.002 0.081± 0.002 0.13± 0.01 2.00± 0.18 2.33± 0.14 (b)

0.95± 0.01 0.95± 0.01 0.96± 0.01 0.98± 0.02 0.98± 0.02 (c)

SYNTHIE 71.00± 6.44 71.00± 6.04 74.00± 6.44 73.00± 7.57 73.75± 7.52 (a)

1.60± 0.20 1.86± 0.24 29.97± 2.16 29.50± 2.18 29.37± 2.18 (b)

0.73± 0.07 0.72± 0.08 0.61± 0.11 0.59± 0.12 0.58± 0.12 (c)

HYDRIDES 82.75± 2.67 82.65± 2.44 83.92± 4.30 77.45± 3.25 76.37± 2.57 (a)

0.13± 0.01 0.13± 0.01 1.68± 0.87 4.75± 0.41 5.03± 0.75 (b)

0.50± 0.11 0.50± 0.11 0.8± 0.19 0.85± 0.21 0.72± 0.22 (c)

where z∗
k is the mean graph embedding for class k. The IGED can be interpreted

as an estimate of how well the graph embeddings computed by SPI-GCN are
separated with respect to their respective class.

Experimental Procedure. We train SPI-GCN on the penalized cross entropy
loss Lp (10) where we sequentially choose α from {0, 10−3, 10−1, 1, 10}. We do
so using full batch Adam optimizer that we run for 200 epochs with a learning
rate of 10−3, on all the graph data sets introduced previously. For each data set
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and for each value of α, we perform 10-fold cross validation using 9 folds for
training and one fold for testing. We report in Table 2 the average and standard
deviation of: (a) the test accuracy, (b) the expressiveness E(SPI-GCN), and (c)
the IGED (11), for each value of α and for each data set.

Results. We observe from Table 2 that using a penalty term in Lp to maxi-
mize the expressiveness—or injectivity—of SPI-GCN helps to improve the test
accuracy on some data sets, notably on MUTAG, PTC, and SYNTHIE. How-
ever, larger values of E(SPI-GCN) do not correspond to a higher test accu-
racy except for two cases (PTC, SYNTHIE). Overall, E(SPI-GCN) increases
when α increases, as expected, since the expressiveness is maximized during
training when α > 0. The IGED, on the other hand, is correlated to the best
performance in four out of ten cases (ENZYMES, IMDB-BINARY, and IMDB-
MULTI), where the test accuracy is maximal when the IGED is maximal. On
HYDRIDES, the difference in IGED for α = 10−1 (highest accuracy) and α = 1
(highest IGED value) is negligible.

Our empirical results indicate that while optimizing the expressiveness of
SPI-GCN may result in a higher test accuracy in some cases, more expressive
GNNs do not systematically perform better in practice. The IGED, however,
which reflects a GNN’s ability to compute graph representations that are cor-
rectly clustered according to their effective class, better explains the generaliza-
tion performance of the GNN.

7 Conclusion

In this paper, we challenged the common belief that more expressive GNNs
achieve a better performance. We introduced a principled experimental pro-
cedure to analyze the link between the expressiveness of a GNN and its test
accuracy in a graph classification setting. To the best of our knowledge, our
work is the first that explicitly studies the generalization performance of GNNs
by trying to uncover the factors that control it, and paves the way for more
theoretical analyses. Interesting directions for future work include the design of
better expressiveness estimators, as well as different (possibly more complex)
penalized loss functions.
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