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Abstract. Prognostics is the area of research that is concerned with
predicting the remaining useful life of machines and machine parts. The
remaining useful life is the time during which a machine or part can
be used, before it must be replaced or repaired. To create accurate pre-
dictions, predictive techniques must take external data into account on
the operating conditions of the part and events that occurred during its
lifetime. However, such data is often not available. Similarity-based tech-
niques can help in such cases. They are based on the hypothesis that if a
curve developed similarly to other curves up to a point, it will probably
continue to do so. This paper presents a novel technique for similarity-
based remaining useful life prediction. In particular, it combines Bayesian
updating with priors that are based on similarity estimation. The paper
shows that this technique outperforms other techniques on long-term
predictions by a large margin, although other techniques still perform
better on short-term predictions.

Keywords: Remaining useful life · Trajectory based similarity
prediction · Bayesian updating · Similarity estimation · Prognostics ·
Prediction

1 Introduction

Prognostics is the area of research that concerns the prediction of the remaining
useful life (RUL) of machines or machine parts. A RUL prediction is a prediction
of the time until a machine or machine part must be replaced or repaired. It is
important that such predictions are accurate: early predictions lead to unneces-
sarily frequent maintenance with associated costs, while late predictions increase
the risk of a machine break down with associated loss of production time and
possibly sales.

Data-driven RUL prediction is based on run to failure data, i.e., observations
on what happened to a part or machine in a run from the last maintenance
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activity to the next. Figure 1 shows a typical example of run to failure data,
in this case data of a filter in a chemical plant. The figure shows condition
measurements on the filter over time, in terms of the difference in pressure before
and after the filter. It shows that this difference is close to zero for some time.
Then, the filter starts to clog up and the pressure builds up, until the filter is
replaced and the pressure difference returns to normal. The resulting ‘sawtooth’
shape is frequently observed in run to failure data.

Fig. 1. Example run to failure data.

RUL prediction on run to failure data can be done by fitting a model, such
as a regression model or a probability distribution, on the data. Many differ-
ent techniques exist for those purposes [1]. However, as is evident from Fig. 1,
different runs may have very different durations or shapes, and RUL prediction
techniques rely on additional data to accurately predict the duration and shape
of a particular run. Unfortunately, additional data is often unavailable or hard to
relate to the run to failure data [2]. If additional data is unavailable, it is unclear
which condition measurements are reliable and of course what their influence
is on the RUL. One way to overcome these problems is to use similarity-based
techniques, which work based on the hypothesis that, if a curve has developed
similarly to some collection of other curves until now, it will likely continue to
develop like that, and have a similar remaining useful life.

This paper explores the performance of two similarity-based techniques:
trajectory-based similarity prediction, and Bayesian updating. It then adds its
own: Bayesian updating with similarity-based priors. The contribution of this
paper consists of this technique, described in Sect. 3.4, as well as a detailed eval-
uation of all three techniques in a case study from practice, described in Sect. 4.

Against this background, the remainder of this paper is structured as follows.
Section 2 presents related work on remaining useful life prediction. Section 3
presents similarity-based remaining useful life prediction techniques, including
the new technique. Section 4 compares the performance of the various techniques
in a case study and Sect. 5 presents the conclusions.
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2 Related Work

RUL prediction can be considered a specialized form of survival analysis [10].
Essentially, two types of techniques exist for predicting RUL: model-based and
data-driven techniques. Model-based techniques use physical models to accu-
rately represent the wear and tear of a component over time [5]. Data-driven
techniques do not presume any knowledge about how a component wears out
over time, but merely predicts the RUL based on past observations. Hybrid mod-
els, which are a combination of physical and data-driven techniques, also exist
[9]. This paper focuses on data-driven models, which are most suited when the
physical mechanisms that cause a component to fail are too complex to model
cost-effectively, or if they are not sufficiently understood.

A large number of data-driven techniques is available that fall into two classes
depending on whether or not a probability distribution of the RUL must be
obtained or a point-estimate is sufficient [1]. A probability distribution of the
RUL has several benefits [16,17,20]. For example, it facilitates stochastic decision
making, where maintenance is done when the probability that a part will fail
exceeds a certain threshold, which is in line with the way in which maintenance
decisions are made. When it is not necessary to produce a probability density
function, several models can be used. The most obvious choices include regression
models that use time as the primary independent variable and time-series models.
However, regression models require that the behavior of the curve is predictable
over time [4,13] and time-series [12] models are only suitable for short-term
predictions [3,16] or when the behavior of the curve is predictable over time.
Regression models that take other variables into account can also be used [6].
Such models have the benefit that they do not only consider the dependency
of the RUL on the time that the part has been in operation, but also on other
relevant factors, such as the operational temperature or vibration of the part.

When the RUL depends on other factors beyond time, but data on such
factors is not available, one can include them as a black box. While we may
not know the values of relevant factors, we can still find historical runs that are
similar to the current run. If we assume that the factors that influenced histor-
ically similar runs are also similar to the current run, then the future behavior
of the current run will also be similar to the behavior of the historically similar
runs. This is called Trajectory Based Similarity Prediction (TBSP) [11,18,19].
Bayesian updating techniques use a similar principle [7,8]. Such techniques cre-
ate a prior probability distribution of the RUL (based on data from historical
runs to failure), which updates as more data of the current run is revealed.

3 Prediction Techniques

This section presents similarity-based techniques that can be used for RUL pre-
diction: TBSP and Bayesian updating, which are defined in related work as
explained in Sect. 2. Subsequently, Sect. 3.4 presents a novel technique, Bayesian
updating with similarity-based prior estimation, which is a combination of TBSP
and Bayesian updating.
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3.1 Preliminaries

The remaining useful life of a part is defined as follows.

Definition 1 (Remaining Useful Life (RUL)). Let t be a moment in a run
and tE be the moment in the run at which the part fails. The Remaining Useful
Life (RUL) at time t, r(t), is defined as r(t) = tE − t.

Note that ‘failure’ can be interpreted broadly. It does not have to be the
point at which the part breaks, but can also be the point at which the part
reaches a condition in which it is not considered suitable for operation anymore,
or a condition in which maintenance is considered necessary. Over time, multiple
runs to failure will be observed, such as the runs to failure shown in Fig. 1.

Definition 2 (Run to failure library). L is the library of past runs to failure.
For each l ∈ L, tlE is the moment in the run at which the part fails, and gl(t) is
the function that returns the condition of the part at time t of the run.

The function gl(t) is created by fitting a curve on the condition measurements
of the run. We consider the one-dimensional case here (i.e., the case in which
we only measure the condition of the part), but this can easily be extended
to a multi-dimensional case (i.e., the case in which we not only measure the
condition of the part, but also external factors (i.e., other variables than the
condition variable itself), such as the operating temperature or pressure) by
considering the observations as vectors over multiple variables. We will also omit
the superscript l if there can be no confusion about the run to which we refer.

3.2 Trajectory-Based Similarity Prediction
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Fig. 2. Example library of runs.

Figure 2 shows a different
(cf. Fig. 1) representation of
a run to failure library. It
shows all runs in the library,
starting from the moment at
which the condition variable
starts to increase from the
base condition. It also shows
a ‘current’ run as a thicker,
unfinished curve. The idea
of trajectory-based similar-
ity prediction is to find some
number k of runs that are
most similar to the current
run. For each of these k sim-
ilar runs, we know the time
it took until the part failed.
Trajectory-based Similarity Prediction (TBSP) estimates the time until failure
as the mean failure time of the similar runs.
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Definition 3 (Distance of current run to library run). At a moment in
time t, let I be the number of observations made in the current run, with values
z1, . . . , zI observed at times t1, . . . , tI , and let l ∈ L be a library run. We denote
by dl(t) any distance measure contrasting z1, . . . , zI with gl(t1), . . . , gl(tI). Let
El(t) and M l(t) denote Euclidean and Manhattan distance, respectively.

Clearly other distance functions can and indeed have been used as well in the
context of remaining useful life prediction [21]. An in-depth analysis of the dis-
tance function that performs best for TBSP is beyond the scope of this work.

Definition 4 (Fit of current run to library run). For each library run
l ∈ L, let dl(t) be defined as in Definition 3. The fit of the current run to l is:

Sl(t) = e−|dl(t)|

When, at time t of the current run, the library run l is found that fits the
current run best, the remaining useful life of the current run can be predicted
as the remaining useful life of that run l: r(t) = tlE − t. It is also possible to base
the prediction of the remaining useful life on the best k runs; sensitivity to k
is part of our experiments. If k > 1, we can also aggregate RUL predictions by
weighted average, where the weights are the goodness of fit of the library runs
to the current run.

Definition 5 (Trajectory-based Similarity Prediction). For each library
run l ∈ L, let Sl(t) be the fit of the run to the current run as per Definition 4
and let rl(t) be the RUL of the run. Let L′ ⊆ L be the subset of past runs on
which we want to base our RUL prediction. The predicted RUL of the current
run, r̂(t), is:

r̂(t) =
∑

l∈L′ Sl(t) · rl(t)
∑

l∈L′ Sl(t)

3.3 Bayesian Updating

A Bayesian updating method has also been proposed to create a probability dis-
tribution of the remaining useful life [7,8]. The probability distribution can be
updated with each observation of the condition variable that is obtained. The
method works by fitting an exponential model to the library runs and subse-
quently updating that model with observations of the current run.

Intuitively, looking at Fig. 2, Bayesian updating works by fitting a curve to
each of the library runs or to a selection of library runs. Based on the resulting
collection of curves, a prior probability distribution of the time until the part fails
can be created, which represents the ‘probable’ curve that the current run —or
in fact any run—will follow. The prior probability distribution can be updated
each time a condition value is observed in the current run. This update leads to
a posterior probability distribution that represents the curve that the current
run will follow with a higher precision (smaller confidence interval).
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Definition 6 (RUL probability density). For each library run l ∈ L, let
gl(t) be the function that returns the condition of the part at time t of the run.
The condition function can be fitted as an exponential model that has the form:

gl(t) = φ + θeβt+ε(t)− 1
2σ2

Here, φ is the intercept, ε(t) is the error term with mean 0 and variance σ2, and
θ and β are random variables.

If we set φ = 0 and take the natural logarithm of both sides, we get:

ln(gl(t)) = θ′ + βt + ε(t)

where θ′ = ln(θ) + 1
2σ2. Considering that we have multiple runs l ∈ L, it is

possible to fit this equation multiple times to those runs and calculate values for
θ′, β and σ for each run. With these values, we can compute the prior probability
distributions of θ′ and β. We assume these distributions are normal distributions
with means μ′

0 and μ1 and variances σ2
0 and σ2

1 . While the prior distributions are
created based on observations from library runs, the distribution can be updated
as more observations become available in the current run.

Proposition 1 (RUL probability density updating). Let π(θ′) and π(β)
be the prior distributions of the random variables from Definition 6 with means
μ′
0 and μ1 and variances σ2

0 and σ2
1, where θ′ = ln(θ)+ 1

2σ2 and σ2 is the variance
of the error term. Furthermore, let there be I observed values, z1, . . . , zI , in the
current run, made at times t1, . . . , tI , and for i ∈ I, let Li = ln(zi) the natural
logarithm of each observation. The posterior distribution is a bivariate normal
distribution with θ′ and β, whose means μθ′ and μβ, variances σ2

θ′ and σ2
β, and

correlation coefficient ρ can be calculated as follows:
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The proof of this proposition is given in [8]. Consequently, ln(gl(t)) for the cur-
rent run to failure l is normally distributed with mean and variance:

μ(t) ∼= μθ′ + μβt − 1

2
σ2 σ(t) ∼= σ2

θ′ + σ2
βt2 + σ2 + 2ρtσθ′σβ

With this information, the probability that future values of ln(gl(t)) exceed the
maximum acceptable condition at some time t can be computed.

3.4 Bayesian Updating with Similarity-Based Prior Estimation

The RUL probability density function in Definition 6 depends on estimated prior
distributions of θ and β. These priors can be set through analyzing previous runs
to failure, either based on the complete library of runs, or on a subset of the
runs. More precisely, we can determine prior distributions as follows.

Definition 7 (Prior distributions). For each library run l ∈ L, let gl(t) be
the exponential curve that is fitted to the observations in that run with parameters
θ′l and βl as in Definition 6. For a subset M ⊆ L of runs, we can determine the
mean and standard deviation of θ′ and β over all θ′m and βm.

Consequently, our priors depend on the subset M ⊆ L of runs that we use.
For example, we can determine our priors based on M = L, the complete set of
runs. Here, we consider a variant of the Bayesian updating method in which the
priors are set based on the runs that are most similar to the current run, using
Definition 4 for similarity and thresholds to select the most similar runs. More
precisely, we select our priors as follows.

Definition 8 (Similarity-based prior distributions). Let t be the moment
in time at which we determine our prior distributions and k be the number of
similar runs on which we base them. Furthermore, let Sl(t) be the similarity of
a run l to the observations in the current run until time t as per Definition 4.
The set of k most similar runs M ⊆ L at moment t is then defined as the set in
which, for all runs m ∈ M , there is no run l ∈ L − M , such that Sl(t) > Sm(t).

Note that this definition depends on variables t and k, which can therefore
be expected to influence the performance of the technique. In our evaluation, we
will explore the performance of the technique for different values of t and k.

4 Evaluation

In this section, we put the RUL prediction techniques introduced in Sect. 3 to
the test, in a case study with data from practice.
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4.1 Case Study

Our data originates from a chemical plant on the Chemelot Industrial Site1. The
plant we investigate produces a steady flow of various chemical products; what-
ever the product happens to be, an unwanted byproduct is always generated.
Filters have been installed to obtain an untainted final product. These filters
have a variable service life, ranging between two and eight days. When the fil-
ter performs its function, it withholds residue of the unwanted byproduct. This
residue gradually builds up, forming a cake which increases the resistance of the
filter. The additional resistance is measured through an increase in differential
pressure (δP ), as illustrated in Fig. 1. An unclogged filter has a δP of 0.2 bar.
When δP reaches a threshold of 2.4 bar, a valve in front of the filter is switched
to let the product run through a parallel, clean filter, which returns δP to 0.2
bar and enables engineers to maintain the clogged filter.

Sensor data, including δP , is stored in a NoSQL database as time series.
Preprocessing is needed in several aspects. First, the data has many missing val-
ues, which we replace by the last observed value. Second, the sensors generate
a data point every second. We established experimentally that resampling the
data to the minute barely loses any information from the signal, while still sub-
stantially reducing the size of the dataset. Third, to avoid the amplification of
clear outliers, they are removed with a Hampel filter [14]. Fourth, we focus on the
‘exponential deterioration stage’ of the filter’s life cycle [5], because—according
to the company—the start of that stage is early enough to be able to act on time,
and because it provides us with a dataset that is suitable for similarity-based
RUL prediction techniques. The start and end of the exponential deterioration
stage must be derived from data. We do that by comparing the average pressure
over the last hour with its preceding hour. To ensure that every run has only one
start per stop, a detected start is ignored if another start was already detected
in the same run.

4.2 Results

We quantify our results using an α−λ graph. Intuitively, this graph represents the
probability that, at a certain moment in the run to failure, the RUL prediction
(λ) is within a pre-defined level of precision (α) [15]. We will use a concise
representation of the α − λ quality: rather than time into the run, we put the
RUL on the x-axis, while the y-axis displays the probability. This representation
allows us to visually compare different techniques. All analysis is done using 5-
fold cross validation. The results presented in the graphs are the averages over
the 5 folds.

Figures 3a, b, and c show the performance of the TBSP technique for various
parameter settings. Figure 3a compares the performance of TBSP when fitting
various types of curves (second (‘poly2’) and third (‘poly3’) order polynomials,

1 An anonymized version of the data is made available at: https://surfdrive.surf.nl/
files/index.php/s/1dTFFXfZ7woeSUA.

https://surfdrive.surf.nl/files/index.php/s/1dTFFXfZ7woeSUA
https://surfdrive.surf.nl/files/index.php/s/1dTFFXfZ7woeSUA
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(a) Performance across curve types.
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(d) Performance across priors.

Fig. 3. Comparison of hyperparameter settings.

exponential curves (‘exp1’), and the sum of two exponential curves (‘exp2’)),
Fig. 3b compares Manhattan and Euclidean distance, and Fig. 3c shows the sen-
sitivity to the number of similar curves k. The graphs show that TBSP performs
best for an exponential curve in short term (<48 h) predictions, and for k = 2, 3,
or 4, while there is little to no performance difference between Manhattan and
Euclidean distance and between k = 2, 3, or 4. For those reasons, we param-
eterize TBSP with exponential curves, using Euclidean distance as a distance
metric, and using 3 similar curves to make the prediction.

Figure 3d shows the performance of the Bayesian updating technique for var-
ious prior sets of runs on which the prior is based. We consider four alternatives.
In the first alternative, no prior is defined and the prediction is only computed
based on the current run. In the second alternative, the prior distribution is
based on all runs in the library. In the third alternative, we create a prior dis-
tribution by fitting the run with the (closest to) average run to failure time. In
the fourth alternative, we create a prior distribution by fitting the shortest, the
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longest, and the average run. The figure shows that for long term predictions, a
prior fitted on the ‘average’, the shortest and longest run performs best, while
for short term predictions, a prior fitted on the whole library performs best.

Fig. 4. Performance across moments for setting priors.

Figure 4 shows the performance of Bayesian updating with similarity-based
priors for various settings of the moment at which the priors are determined. The
best performance is obtained when priors are determined 5 h into the current run
to completion; 10, 15, and 20 h were also considered. The number of similar runs
on which the priors are based is also a parameter for Bayesian updating with
similarity-based priors. The priors are based on the 3 most similar runs. This
led to the best results when comparing results for priors based on 1, 2, 3, 4, 5,
and 10 similar runs.

Figure 5 shows the results for the various prediction techniques: TBSP,
Bayesian Updating, and Bayesian updating with similarity-based priors. The
results show a clear distinction in the performance of the different techniques.
TBSP performs best for short-term (<48 h before failure) predictions, while
Bayesian updating with similarity-based priors performs best in the long term
(150–200 h before failure). This is expected, because for long-term prediction,
Bayesian updating with similarity-based priors benefits from being based both
on similar runs and on general Bayesian behavior, while after some updates
the impact of the priors is reduced and the behavior approaches that of nor-
mal Bayesian updating. TBSP on the other hand benefits from having a better
estimate of the runs to which it is close as time progresses.
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Fig. 5. Overall comparison of techniques.

5 Conclusions

In a case study, we show how techniques from literature can be combined
and parameterized to accurately predict the Remaining Useful Life (RUL) of
a machine or part. While curves of the degradation of a machine or part over
time typically have a similar shape, the challenge is that operational constraints,
which may be unknown, influence the exact parameterization of that curve, as
evidenced by the real-life runs displayed in Figs. 1 and 2. Therefore, we propose
a similarity-based prediction technique: while it makes no sense to compare the
current run with all previously observed runs, it is quite likely that there are
some historical runs that are similar to the current run, because they have similar
operational constraints, hence providing us with powerful predictive information.

This paper proposes a new similarity-based prediction technique, in which we
obtain a probability distribution of the RUL through Bayesian updating, where
the priors of the Bayesian distribution are calculated based on a careful selection
of previously seen runs. As evidenced by Fig. 5, our technique outperforms alter-
native techniques in a case study by a large margin within the long-term region.
If we strive to predict the RUL shorter in advance, Fig. 5 clearly indicates that
other methods work better.

While we studied the performance of RUL prediction techniques in the con-
text of a particular case study, in many other domains degradation patterns have
similar properties. In particular, in many other domains: run to failure data has
a ‘sawtooth’ shape as in Fig. 1, degradation depends on operational conditions
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that are unknown (e.g., because they are not measured), and long-term predic-
tions are of interest (e.g., for planning maintenance activities). In such situations
our technique can also be expected to work well.
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