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Abstract. While neural networks are powerful approximators used to
classify or embed data into lower dimensional spaces, they are often
regarded as black boxes with uninterpretable features. Here we pro-
pose Graph Spectral Regularization for making hidden layers more inter-
pretable without significantly impacting performance on the primary
task. Taking inspiration from spatial organization and localization of neu-
ron activations in biological networks, we use a graph Laplacian penalty
to structure the activations within a layer. This penalty encourages acti-
vations to be smooth either on a predetermined graph or on a feature-
space graph learned from the data via co-activations of a hidden layer
of the neural network. We show numerous uses for this additional struc-
ture including cluster indication and visualization in biological and image
data sets.

Keywords: Neural Network Interpretability · Graph learning ·
Feature saliency

1 Introduction

Common intuitions and motivating explanations for the success of deep learning
approaches rely on analogies between artificial and biological neural networks,
and the mechanism they use for processing information. However, one aspect
that is overlooked is the spatial organization of neurons in the brain. Indeed,
the hierarchical spatial organization of neurons, determined via fMRI and other
technologies [13,16], is often leveraged in neuroscience works to explore, under-
stand, and interpret various neural processing mechanisms and high-level brain
functions. In artificial neural networks (ANN), on the other hand, hidden layers
offer no organization that can be regarded as equivalent to the biological one.
This lack of organization poses great difficulties in exploring and interpreting
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the internal data representations provided by hidden layers of ANNs and the
information encoded by them. This challenge, in turn, gives rise to the com-
mon treatment of ANNs as black boxes whose operation and data processing
mechanisms cannot be easily understood. To address this issue, we focus on the
problem of modifying ANNs to learn more interpretable feature spaces without
degrading their primary task performance.

While most neural networks are treated as black boxes, we note that there are
methods in ANN literature for understanding the activations of filters in convo-
lutional neural networks (CNNs) [11], either by examining trained networks [24],
or by learning a better representation [12,17,18,22,25], but such methods rarely
apply to other types of networks, in particular dense neural networks (DNNs)
where a single activation is often not interpretable on its own. Furthermore, con-
volutions only apply to datatypes where we know the feature structure apriori,
as in the case of images and natural language. In layers of a DNN, there is no
enforced structure between neurons. The correspondence between neurons and
concepts is only determined based on the random initialization of the network.
In this work, we encourage structure between neurons in the same layer, creating
more localized and interpretable layers in dense architectures.

More specifically we propose a Graph Spectral Regularization to encourage
arbitrary graph structure between neurons within a layer. The internal layers of
a neural network are constrained to take the structure of a graph, with graph
neighbors activating on similar inputs. This allows us to map the activations of
a given layer over the graph and interpret new input by examining the activa-
tions. We show that graph-structuring a hidden layer causes useful, interpretable
features to emerge. For instance, we show that grid-structuring a layer of a clas-
sification network creates a structure over which convolution can be applied, and
local receptive fields can be traced to understand classification decisions.

While a majority of the time imposing a known graph structure gives inter-
pretable results, there are circumstances where we would like to learn the graph
structure from data. In such cases we can learn and emphasize the natural graph
structure of the feature space. We do this by an iterative process of encoding
the data, and modifying the graph based on the feature co-activation patterns.
This procedure reinforces existing patterns in the data. This allows us to learn
an abstracted graph structure of features in high-dimensional domains such as
single-cell RNA sequencing.

The main contributions of this work are as follows: (1) Demonstration of
hierarchical, spatial, and smoothed feature maps for interpretability in dense
networks. (2) A novel method for learning and reinforcing the natural graph
structure for complex feature spaces. (3) Demonstration of graph learning and
abstraction on single-cell RNA-sequencing data.

2 Related Work

Disentangled Representation Learning: While there is no precise definition of
what makes for a disentangled representation, the aim is to learn a representa-
tion that axis aligns with the generative factors of the data [2,8]. [9] suggest a
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way to disentangle the representation of variational autoencoders [10] with β-
VAE. Subsequent work has generalized this to discrete representations [5], and
simple hierarchical representations [6]. These works focus on learning a single
vector representation of the data, where each element represents a single con-
cept. In contrast, our work learns a representation where groups of neurons may
be involved in representing a single concept. Moreover, disentangled represen-
tation learning can only be applied to unsupervised models and only the most
compressed level of either an autoencoder [9] or generative adversarial network
as in [4], whereas graph spectral regularization (GSR) can be applied to any or
all layers of the network.

Graph Structure in ANNs: Graph based penalties have been used in the graph
signal processing literature [3,21,26], but are rarely used in an ANN setting. In
the biological data setting, [14] used a graph penalty in sparse logistic regression
on gene expression data. Another way of utilizing graph structure is through
graph convolutional networks (GCN). GCNs are a related body of work intro-
duced by [7], and expanded on by [19], but focus on a different set of problems
(For an overview see [23]). GCNs require a known graph structure. We focus on
learning a graph representation of general data. This learned graph representa-
tion could be used as the input to a GCN similar to our MNIST example.

3 Enforcing Graph Structure

We consider the intra-layer relationships between neurons or larger structures
such as capsules. For a given layer of neurons we construct a graph G = (V,E)
with V = {v1, . . . , vN} the set of vertices and E ⊆ V ×V the set of edges. Let W
be the weighted symmetric adjacency matrix of size N ×N with Wij = Wji ≥ 0
representing the weight of the edge between vi and vj . The graph Laplacian L
is then defined as L = D − W where Dii =

∑
j Wij and Dij = 0 for i �= j.

To enforce smoothing we use the Laplacian smoothing loss. On some activa-
tion vector z and fixed Laplacian L we formulate the graph spectral regulariza-
tion function G as:

G(z,L) = zTLz =
∑

ij

Wij ||zi − zj || (1)

where || · || denotes the Frobenius norm. We add it to the reconstruction or
classification loss with a weighting term α. This adds an additional objective that
activations should be smooth along the graph defined by L. This optimization
procedure applies to any multi-layer model and valid graph Laplacian. We apply
this algorithm to grid, and hierarchical graph structures on both autoencoder
and classification dense architectures.
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Algorithm 1. Graph Learning
Input batches xi, model M with latent layer activations zi, regularization weight α.
Pre-train M on xi with α = 0
for i = 1 to T do

Create Graph Laplacian Li from activations zi
for j = 1 to m do

Train M on xi with α = w and L = Li with MSE + loss in eq. 1
end for

end for

3.1 Learning and Reinforcing an Abstracted Feature-Space Graph

Instead of enforcing smoothness over a fixed graph, we can learn a feature
graph from the data (See Algorithm 1) using neural network activations them-
selves to bootstrap the process. Note, that most graph and kernel-based methods
are applied over the space of observations but not over the space of features. One
of the reasons is because it is even more difficult to define a distance between
features than it is between observations. To circumvent this problem, we propose
to learn a feature graph in the latent space of a neural network using feature
co-activations as a measure of similarity.

We proceed by creating a graph using feature activation similarity, then
applying this graph using Laplacian smoothing for a number of iterations. This
converges to a graph of a latent feature space at the level of granularity of the
number of dimensions in the corresponding layer.

Our algorithm for learning the graph consists of two phases. First, a pretrain-
ing phase where the model is learned with no graph regularization. Second, we
alternate between constructing the graph from the similarities of the embedding
layer features and further training the network for reconstruction and smooth-
ness on the graph. There are many ways to create a graph from the feature ×
datapoint activation matrix. We use an adaptive Gaussian kernel,

K(zi, zj) =
1
2
exp

(

− ||zi − zj ||22
σ2
i

)

+
1
2
exp

(

− ||zi − zj ||22
σ2
j

)

where σi is the adaptive bandwidth for node i which we set as the distance to
the kth nearest neighbor of feature. An adaptive bandwidth Gaussian kernel is
necessary for general architectures as the scale of the activations is not fixed.
Batch normalization can also be used to limit the activation scale.

Since we are smoothing on the graph then constructing a new graph from the
smoothed signal the learned graph converges to a steady state where the mean
squared error acts as a repulsive force to stop the graph collapsing any further.
We present the results of graph learning a biological dataset and show that the
learned structure adds interpretability to the activations.
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4 Experiments

Through examples, we show that visualizing the activations of data on the reg-
ularized layer highlights relationships in the data that are not easily visible
without it. We establish this with two examples on fixed graphs, then move to
graphs learned from the structure of the data with two examples of hierarchical
structure and two with progression structure.

4.1 Fixed Structure

Enforcing fixed graph structure localizes activations for similar datapoints to a
region of the graph. Here we show that enforcing a 8×8 grid graph on a layer of a
dense MNIST classifier causes receptive fields to form, where each digit occupies
a localized group of neurons on the grid. This can, in principle, be applied to
any neural network layer to group neurons activating to similar features. Like
in FMRI data or a convolutional neural network, we can examine the activation
patterns for each localized group of neurons. For a second example, we show the
usefulness in encouraging localized structure on a capsulenet architecture [18].
Where we are able to create globally consistent structure for better alignment
of features between capsules.

Fig. 1. Shows average activation by digit over an (8×8) 2D grid using graph spectral
regularization and convolutions following the regularization layer. Next, we segment
the embedding space by class to localize portions of the embedding associated with
each class. Notice that the digit 4 here serves as the null case and does not show up
in the segmentation. Finally, we show the top 10% activation on the embedding of
some sample images. For two digits (9 and 3) we show a normal input, a correctly
classified but transitional input, and a misclassified input. The highlighted regions of
the embedding space correlate with the semantic description of the input.
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Enforcing Grid Structure on Mnist. Without GSR, activations are unstruc-
tured and as a result are difficult to interpret, in that it is difficult to visually
identify even which class a digit comes from based on the activation pattern
(See Fig. 1). With GSR we can organize the activations making this representa-
tion more visually distinguishable. Since we can now take this embedding as an
image, it is possible to use a standard convolutional architecture in subsequent
layers in order to further filter the encodings. When we add 3 layers of 3×3 2D
convolutions with 2×2 max pooling we see that representations for each digit
are compressed into specific areas of the image. This leads to the formation of
receptive fields over the network pertaining to similar datapoints. Using these
receptive fields, we can now extract the features responsible for digit classifica-
tion. For example, features that contribute to the activation of the top right of
our grid we can associate with those features that contribute to being the digit 9.

The activation patterns on the embedding layer correspond well to a human
perception of the digit type. The 9 that is misclassified as 7 both has significant
activation in the 7 region of the embedding layer, and looks visually close to a
7. We can now interpret the embedding layer as a sort of brain map, where the
map can map regions of activations, to types of inputs. This is not possible in a
standard neural network, where activations are not spatially organized.

Fig. 2. (a) shows the regularization structure between capsules. (b–c) Show recon-
struction when one of the 16 dimensions in the DigitCaps representation is tweaked
by 0.05 ∈ [−0.25, 0.25]. (b) Without GSR each digit responds differently to perturba-
tion of the same dimension. With GSR (c) a single dimension represents line thickness
across all digits.

Enforcing Node Consistency on Capsule Networks. Capsule net-
works [18] represent the input as a set of vectors where norm denotes activa-
tion and each component corresponds to some abstract feature. These elements
are generally unordered. Here we use GSR to order these features consistently
between digits. We train a capsule net on MNIST with GSR on 16 fully connected
graphs between the 10 digit capsules. In the standard capsule network, each
capsule orders features randomly based on initialization. However, with GSR we
obtain a consistent feature ordering, e.g. node 1 corresponds to line thickness
across all digits. GSR enforces a more ordered and interpretable encoding where
localized regions are similarly organized, and the global line thickness feature is
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consistently learned between digits. More generally, GSR can be used to order
nodes such that features common across capsules appear together. Finally, GSR
does not degrade performance much, as can be seen by the digit reconstructions
in Fig. 2.

In these examples the goal was to enforce a specified structure on unstruc-
tured features, but next we will examine the case where the goal is to learn the
structure of the reduced feature space.

4.2 Learning Graph Structure

Using the procedure defined in Sect. 3.1, we can learn a graph structure. We first
show that depending on the data, the learned graph exhibits either cluster or
trajectory structure. We then show that our framework can learn structures that
are hierarchical, i.e. subclusters within clusters or trajectories within clusters.
Hierarchies are a difficult structure for other interpretability methods to learn [6].
However, our method naturally captures this by allowing for arbitrary graph
structure among neurons in a layer.

Fig. 3. We show the structure of the training data and snapshots of the learned graph
for (a) three modules and (b) eight modules. (c) shows we have the mean and 95% CI
of the number of connected components in the trained graph for over 50 trials.

Cluster Structure on Generated Data. We structure our nth dataset to
have exactly n feature clusters. We generate the data with n clusters by first cre-
ating 2n data points representing the binary numbers from 0 to 2n−1, then added
gaussian noise N(0, 0.1). This creates a dataset with a ground truth number of
feature clusters. In the nth dataset the learned graph should have n connected
components for n independent features. In Fig. 3 (a–b) we can see how this graph
evolves over time for 3 and 8 modules. (c) shows how the learned graph learns
the correct number of connected components for each ground truth number of
clusters.
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Fig. 4. Shows (a) graph structure over training iterations (b) feature activations of
parts of the trajectory. PHATE [15] embedding plots colored by (c) branch number
and (b) inferred trajectory location showing the branching structure of the data.

Trajectory Structure on T Cell Development Data. Next, we test graph
learning on biological mass cytometry data, which is a high dimensional, single-
cell protein dataset, measured on differentiating T cells from the Thymus [20].
The T cells lie along a bifurcating progression where the cells eventually diverge
into two lineages (CD4+ and CD8+). Here, the structure of the data is a trajec-
tory (as opposed to a pattern of clusters). We can see in Fig. 4 how the activated
nodes in the graph embedding layer correspond to locations along the data tra-
jectory, and importantly, the learned graph is a single connected component. The
activated nodes (yellow) move from the bottom of the embedding to the top as
T-cells develop into CD8+ cells. The CD4+ lineage is also CD8- and thus looks
like a mixture between the CD8+ branch and the naive T cells. The learned
graph structure here has captured the transitioning structure of the underlying
data.

Fig. 5. Graph architecture, PCA plot, activation heatmaps of a standard autoencoder,
β-VAE [9] and a graph regularized autoencoder. With relu activations normalized to
[0, 1] for comparison. In the model with graph spectral we are able to clearly decipher
the hierarchical structure of the data, whereas with the standard autoencoder or the
β-VAE the structure of the data is not clear.
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Clusters Within Clusters on Generated Data. We demonstrate graph
spectral regularization on data that is generated with a structure containing
sub-clusters. Our data contains three large-scale structures, each comprising
two Gaussian sub clusters generated in 15 dimensions (See Fig. 5). We use this
dataset as it has both global and local structure. We demonstrate that our graph
spectral regularized model is able to pick up on both the global and local struc-
ture of this dataset where disentangling methods such as β-VAE cannot. We
use a graph-structure layer with six nodes with three connected node pairs and
employ the graph spectral regularization. After training, we find that each node
pair acts as a “super node” that detects each large-scale cluster. Within each
super node, each of the two nodes encodes one of each of the two Gaussian sub-
structures. Thus, this specific graph topology is able to extract the hierarchical
topology of the data.

Fig. 6. Shows correlation between a set of marker genes for specific cell types and
embedding layer activations. First with the standard autoencoder, then our autoen-
coder with graph spectral regularization. The left heatmap is biclustered, the right
heatmap is grouped by connected components in the learned graph. We can see pro-
gression especially in the largest connected component where features on the right of
the component correspond to less developed neurons.

Hierarchical Cluster and Trajectory Structure on Developing Mouse
Cortex Data. In Fig. 6 we learn a graph on a single-cell RNA-sequencing
dataset of over 4000 cells and over 8000 genes. The data contains a set of cells
in the process of developing from neural stem cells to full neurons in the mouse
brain. While there are many gene modules that contribute to the neuronal devel-
opment, there are some states that have been studied. We use a list of cell type
marker genes to validate our method. We use 1000 PCA components of the
data in an autoencoder with a 20-dimensional embedding space. We learn the
graph using an adaptive bandwidth gaussian kernel with the bandwidth for each
feature set to the Euclidean distance to the nearest neighboring feature.

Our graph learns six components that represent meta features over the gene
space. We can identify each with a specific type of cell or related types of cells.
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For example, the light green component (cluster 2) represents the very early stage
neural stem cells as it is highly correlated with increased Aldoc, Pax6 and Sox2
gene expression. Most interesting to examine is cluster 6, the largest component,
which represents development into mature neurons. Within this component we
can see a progression from just after intermediate progenitors on the left (show-
ing Eomes expression) to more mature neurons with higher expression of Tbr1
and Sox5. With a standard autoencoder we cannot see progression structure of
this dataset. While some of the more global structure is captured, we fail to see
the data progression from intermediate progenitors to mature neurons. Learning
a graph allows us to create receptive fields e.g. clusters of neurons that corre-
spond to specific structures within the data, in this case cell types. Within these
neighborhoods, we can pick up on the substructure within a single cell type, i.e.
their developmental trajectory.

4.3 Computational Cost

Our method can be used to increase interpretability without much loss in represen-
tation power. At low levels, GSR can be thought of as rearranging the activations
so that they become spatially coherent. As with other interpretability methods,
GSR is not meant to increase representation power, but create useful representa-
tions with low cost in power. Since GSR does not require an information bottleneck
such as in β-VAE, a GSR layer can be very wide, while still being interpretable. In
comparing loss of representation power, GSR should be compared to other regu-
larization methods, namely L1 and L2 penalties (See Table 1). In all three cases we
can see that a higher penalty reduces the model capacity. GSR affects performance
in approximately the same way as L1 and L2 regularizations do. To confirm this,
we ran a MNIST classifier and measured train and test accuracy with 10 replicates.
Graph spectral regularization adds a bit more overhead than elementwise activa-
tion penalties. However, the added cost can be seen as containing one matrix vec-
tor operation per pass. Empirically,GSR shows similar computational cost as other
simple regularizations such as L1 and L2. To compare costs, we used a Keras model
with Tensorflow backend [1] on a Nvidia Titan X GPU and a dual Intel(R) Xeon(R)
CPU E5-2697 v4 @ 2.30 GHz, and with batchsize 256. we observed during training
233 milliseconds (ms) per step with no regularization, 266 ms for GSR, and 265 ms
for L2 penalties.

Table 1. MNIST classification training and test accuracies for coefficient selected
using cross validation over regularization weights in [10−7, 10−6, . . . , 10−2] for various
regularization methods with standard deviation over 10 replicates.

Regularization Training accuracy Test accuracy Coefficient

None 99.1 ± 0.3 97.5 ± 0.3 N/A

L1 98.9 ± 0.3 97.4 ± 0.4 10−4

L2 98.3 ± 0.3 98.0 ± 0.2 10−4

GSR (ours) 99.3 ± 0.3 98.0 ± 0.3 10−3
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5 Conclusion

We have introduced a novel biologically inspired method for regularizing features
of the internal layers of dense neural networks to take the shape of a graph. We
show that coherent features emerge and can be used to interpret the underlying
structure of the dataset. Furthermore, when the intended graph is not known
apriori, we have presented a method for learning the graph structure, which
learns a graph relevant to the data. This regularization framework takes a step
towards more interpretable neural networks, and has applicability for future
work seeking to reveal important structure in real-world biological datasets as
we have demonstrated here.
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