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Abstract. Graph embedding is a technique which consists in finding a
new representation for a graph usually by representing the nodes as vec-
tors in a low-dimensional real space. In this paper, we compare some of
the best known algorithms proposed over the last few years, according to
four structural properties of graphs: first-order and second-order proxim-
ities, isomorphic equivalence and community membership. To study the
embedding algorithms, we introduced several measures. We show that
most of the algorithms are able to recover at most one of the properties
and that some algorithms are more sensitive to the embedding space
dimension than some others.
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1 Introduction

Graphs are useful to model complex systems in a broad range of domains. Among
the approaches designed to study them, graph embedding has attracted a lot of
interest in the scientific community. It consists in encoding parts of the graph
(node, edge, substructure) or a whole graph into a low dimensional space while
preserving structural properties. Because it allows all the range of data mining
and machine learning techniques that require vectors as input to be applied to
relational data, it can benefit a lot of applications.

Several surveys have been recently published [5,6,8,20,21], some of them
including a comparative study of the performance of the methods to solve spe-
cific tasks. Among them, Cui et al. [6] propose a typology of network embedding
methods into three families: matrix factorization, random walk and deep learn-
ing methods. Following the same typology, Goyal et al. [8] compare state of
the art methods on few tasks such as link prediction, graph reconstruction or
node classification and analyze the robustness of the algorithms with respect
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to hyper-parameters. Recently, Cai et al. [5] extended the typology by adding
deep learning based methods without random walks but also two other families:
graph kernel based methods notably helpful to represent the whole graph as a
low-dimensional vector and generative models which provide a latent space as
embedding space. For their part, Zhang et al. [21] classify embedding techniques
into two types: unsupervised network representation learning or semi-supervised
and they list a number of embedding methods depending on the information
sources they use to learn. Like Goyal et al. [8], they compare the methods on
different tasks. Finally, Hamilton et al. [10] introduce an encoder-decoder frame-
work to describe representative embedding algorithms from a methodological
perspective. In this framework, the encoder corresponds to the function which
maps the elements of a graph as vectors. The decoder is a function which asso-
ciates a specific graph statistic to the obtained vectors, for instance for a pair
of node embeddings the decoder can give their similarity in the vector space,
allowing the similarity of the nodes in the original graph to be quantified.

From this last work, we retained the encoder-decoder framework and we pro-
pose to use it for evaluating the different embedding methods. To that end, we
compare, using metrics that we introduce, the value computed by the decoder
with the value associated to the corresponding nodes in the graph for the equiv-
alent function. Thus, in this paper, we adopt a different point of view from
the previous task-oriented evaluations. Indeed, all of them consider embeddings
as a black box, i.e., using obtained features without considering their proper-
ties. They ignore the fact that embedding algorithms are designed, explicitly
or implicitly, to preserve some particular structural properties and their useful-
ness for a given task depends on how they succeed to capture it. Thus, in this
paper, through an experimental comparative study, we compare the ability of
embedding algorithms to capture specific properties, i.e., first-order proximity of
nodes, structural equivalence (second-order proximity), isomorphic equivalence
and community structure.

In Sect. 2, these topological properties are formally defined and measures
are introduced to evaluate to what extent embedding methods encode them.
Section 3 presents the studied embedding methods. Section 4 describes the
datasets used for the experiments, while Sect. 5 presents the results.

2 Structural Properties and Metrics

There is a wide range of graph properties that are of interest. We propose to
study several of them which are at the basis of network analysis and are directly
linked with usual learning and mining tasks on graphs [13]. First, we measure
the ability of an embedding method to recover the set of neighbors of the nodes
which is the first-order proximity (P1). This property is important for several
downstream tasks: clustering where vectors of the same cluster represent nodes of
the same community, graph reconstruction where two similar vectors represent
two nodes that are neighbors in the graph, and node classification based for
instance on majority vote of the neighbors. Secondly, we evaluate the ability of
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embedding methods to capture the second-order proximity (P2) which is the
fact that two nodes have the same set of neighbors. This property is especially
interesting when dealing with link prediction since, in social graphs, it is assumed
that two nodes that share the same friends are likely to become friends too.
Thirdly, we measure how much an embedding method is able to capture the roles
of nodes in a graph which is the isomorphic equivalence (P3). This property is
interesting when looking for specific nodes like leaders or outsiders. Finally, we
evaluate the ability of an embedding method to detect communities (P4) in a
graph which has been an on going field of research for the last 20 years. Next,
we define both properties and measures we use in order to quantify how much
an embedding method is able to capture those properties.

Let G(V,E) be an unweighted and undirected graph where V = {v0, ..., vn−1}
is the set of n vertices, E = {eij}n−1

i,j=0 the set of m edges and A is its binary
adjacency matrix. Graph embedding consists in encoding the graph into a low-
dimensional space Rd, where d is the dimension of the real space, with a function
f : V �→ Y which maps vertices to vector embeddings while preserving some
properties of the graph. We note Y ∈ R

n×d the embedding matrix and Yi its
i-th row representing the node vi.

Neighborhood or first-order proximity (P1): capturing the neighbor-
hood for an embedding method means that it aims at keeping any two nodes vi
and vj that are linked in the original graph (Aij = 1) close in the embedding
space. The measure S designed for this property is based on the comparison
between the set N(vi) of neighbors in the graph of every node vi and the set
NE (vi) of its |N (vi) | nearest neighbors in the embedding space where |N (vi) |
is its degree. Finally, by averaging over all nodes, S quantifies the ability of an
embedding to respect the neighborhood. The higher S, the more P1 is preserved.

S (vi) =
|N (vi)

⋂
NE (vi) |

|N (vi) | , S =
1
n

∑

i

S (vi) (1)

Structural equivalence or second-order proximity (P2): two vertices
are structurally equivalent if they share many of the same neighbors [13]. To
measure the efficiency of an embedding method to recover the structural equiv-
alence, we define the distance distA (Ai, Aj) between the lines of the adjacency
matrix corresponding to each pair of nodes (vi, vj), and distE (Yi, Yj) the dis-
tance between their representative vectors in the embedding space. The metric
for P2 is defined by the correlation coefficient (Spearman or Pearson) Struct eq
between those values for all pairs of nodes. The higher Struct eq (close to 1),
the better P2 is preserved by the algorithm.

LA (vi, vj) = distA (Ai, Aj) , LE (vi, vj) = distE (Yi, Yj) (2)

with distA the distance in the adjacency matrix (cosine or euclidean) and distE ,
the embedding similarity which is indicated in Table 1. Finally,

Struct eq = pearson(LA, LE) (3)
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Isomorphic equivalence (P3): two nodes are isomorphically equivalent,
i.e they share the same role in the graph, if their ego-networks are isomorphic
[4]. The ego-network of node vi is defined as the subgraph ENi made up of
its neighbors and the edges between them (without vi itself). To go beyond a
binary evaluation, for each pair of nodes (vi, vj), we compute the Graph Edit
Distance GED (ENi, ENj) between their ego-networks ENi and ENj thanks
to the Graph Matching Toolkit [16] and the distance between their representa-
tive vectors in the embedding space distE (Yi, Yj). distE is indicated in Table 1.
Finally, the Pearson and Spearman correlation coefficients between those values
computed on all pairs of nodes are used to have an indicator for the whole graph.
A negative correlation means that if the distance in the embedding space is large
then exp(-GED), as in [15], is small. So, to ease one’s reading, we take the oppo-
site of the correlation coefficient such that, for all measures, the best result is 1.
Thus, the higher Isom eq, the better P3 is preserved by the algorithm.

LEgonet (vi, vj) = exp(−GED (ENi, ENj)), LE (vi, vj) = distE (Yi, Yj) (4)

Isom eq = −pearson(LEgonet, LE) (5)

Community/cluster membership (P4): communities can be defined as
“groups of vertices having higher probability of being connected to each other
than to members of other groups” [7]. On the other hand, clusters can be defined
as sets of elements such that elements in the same cluster are more similar to
each other than to those in other clusters. We propose to study the ability of
an embedding method to transfer a community structure to a cluster structure.
Given a graph with k ground-truth communities, we cluster, using KMeans (since
k, the number of communities, is known), the node embeddings into k clusters.
Finally, we compare this partition with the ground-truth partition using the
adjusted mutual information (AMI). We also used the normalized mutual infor-
mation (NMI) but both measures showed similar results. Let LCommunity be the
ground-truth labeling and LClusters the one found by KMeans.

Score = AMI(LCommunity, LClusters) (6)

3 Embeddings

There are many different graph embedding algorithms. We present a non-
exhaustive list of recent methods, representative of the different families pro-
posed in the state-of-the-art. We refer the reader to the full papers for more
information. In Table 1 we mention all the embedding methods we used in our
comparative study with the graph similarity they are supposed to preserve and
the distance that is used in the embedding space to relate any pair of nodes of
the graph. Two versions of N2V are used (A: p = 0.5, q = 4 for local random
walks, B: p = 4, q = 0.5 for deeper random walks).
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Table 1. Studied methods with complexity, their graph similarity (encoder) and their
distance in the embedding space (decoder)

Name of the method Graph sim. Embedding sim.

Laplacian Eigenmaps (LE) [1] - O(N2) 1st-order prox Euclidean

Locally Linear Emb. (LLE) [17] - O(N2) 1st-order prox Euclidean

HOPE [14] - O(N2) Katz-Index Dot-product

SVD of the adjacency matrix - O(N2) 2nd-order prox Dot-product

struc2vec (S2V) [15] - O(Nlog(N)) Co-occurence proba Dot-product

node2vec (N2V) [9] - O(N) Co-occurence proba Dot-product

Verse [18] - O(N) Perso. Page-Rank Dot-product

Kamada-Kawai layout (KKL) [11] - O(N2) Euclidean

Multi-dim Scaling (MDS) [12] 1st-order prox Euclidean

SDNE [19] - O(N) 1st & 2nd-order prox Euclidean

4 Graphs

To evaluate embedding algorithms, we choose real graphs and generated graphs
having different sizes and types: random (R), with preferential attachment (PA),
social (S), social with community structure (SC) as shown in Table 2. While real
graphs correspond to common datasets, generators allow to control the charac-
teristics of the graphs. Thus, we have prior knowledge which makes evaluation
easier and more precise. Table 2 gives the characteristics of these graphs divided
in three groups: small, medium and large graphs.

Table 2. Dataset characteristics. All graphs are provided in our GitHub

Name of the graph Number of nodes Number of edges Type

Zachary Karate Club (ZKC) 34 77 SC

Erdos-Renyi (Gnp100) 100 474 R

Barabasi-Albert (BA100) 100 900 PA

Dancer (Dancer 100) 100 243 SC

Email network (Email) 1133 5452 S

Erdos-Renyi (Gnp1000) 1 000 4985 R

Barabasi-Albert (BA1000) 1000 9900 PA

Dancer (Dancer 1k) 1 000 3627 SC

PGP 10 680 24316 S

Erdos-Renyi (Gnp10000) 10 000 49722 R

Barabasi-Albert (BA10k) 10 000 99900 PA

Dancer (Dancer 10k) 10 000 189886 SC

https://github.com/vaudaine/Comparing_embeddings
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
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5 Results

We used the metrics presented in Sect. 2 to quantify the ability of the embed-
ding algorithms described in Sect. 3 to recover four properties of the graphs:
first order proximity (P1), structural and isomorphic equivalences (P2 and P3),
community membership (P4). Due to lack of space, we show only the most rep-
resentative results and provide the others as additional materials1. For the same
reason, to evaluate P2 and P3, both Pearson and Spearman correlation coef-
ficients have been computed but we only show results for Pearson as they are
similar with Spearman. For readability, every algorithm successfully captures a
property when its corresponding score is at 1 and 0 means unsuccessful. More-
over, a dash (-) in a Table indicates that a method has not been able to provide
a result. Note that due to high complexity, KKL and MDS are not computed for
every graph. Finally, the code and datasets are available online on our GitHub
(see footnote 1).

5.1 Neighborhood (P1)

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 1. Neighborhood (P1) as a function of embedding dimension.

1 https://github.com/vaudaine/Comparing embeddings.

https://github.com/vaudaine/Comparing_embeddings
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Table 3. Neighborhood (P1) Italic: Best in row. Bold: best.

Dimensions 2 10 100 1128

LE 0.086 0.196 0.371 0.007

LLE 0.193 0.352 0.589 0.021

HOPE 0.022 0.104 0.177 0.018

S2V 0.02 0.022 0.021 0.022

N2VA 0.044 0.245 0.37 0.437

N2VB 0.04 0.29 0.414 0.45

SDNE 0.024 0.047 0.055 0.041

SVD 0.054 0.138 0.134 0.026

Verse 0.019 0.021 0.021 0.021

MDS 0.104 0.287 0.793 0.919

(a) Email

Dimensions 2 10 100 1000

LE 0.004 0.097 0.72 0.933

LLE - - 0.045 0.117

HOPE 0.002 0.01 0.226 0.094

S2V 0.001 0.001 0.001 0.001

N2VA 0.002 0.032 0.914 0.945

N2VB 0.002 0.045 0.935 0.935

SDNE 0.001 0.001 0.001 0.001

SVD 0.001 0.001 0.001 0.0

Verse 0.002 0.052 0.961 0.854

(b) Gnp10000

For the first order proximity (P1), we measure the similarity S as a function of
the dimension d for all the embedding methods. For computational reasons, for
large graphs, the measure is computed on 10% of the nodes. Results are shown in
Fig. 1 and Table 3, for d varying from 2 until approximately the number of nodes.
We can make several observations: for networks with communities (Dancer and
ZKC), only LE and LLE reasonably capture this property. For Barabasi Albert
graph and Erdos-Renyi networks, Verse, MDS and LE reach scores higher than
LLE. It means that those algorithms are able to capture this property, but are
fooled by complex meso-scopic organizations. These results can be generalized
as shown in additional materials. MDS can show good performance for instance
on email dataset, Verse works only on our random graphs, LLE works only for
ZKC and Dancer while LE seems to show good performance on every graph
when the right dimension is chosen. In the cases of LE and LLE, there is an
optimal dimension: the increase of the similarity as the dimension grows can be
explained by the fact that enough information is learned; the decrease is due to
eigen-value computation in high-dimension which is very noisy. To conclude, LE
seems to be the best option to recover neighborhood but the right dimension
has to be found.

5.2 Structural Equivalence (P2)

Concerning the second-order proximity (P2), we compute the Pearson correlation
coefficient, as indicated in Sect. 2, as a function of the embedding space dimension
d and we use the same sampling strategy as for property P1.

The results are shown in Fig. 2 and Table 4. Two methods are expected to
have good results, because they explicitly embed the structural equivalence: SVD
and SDNE. HOPE does not explicitly embed this property but a very similar one
which is Katz-Index. On every small graph, SVD effectively performs the best
and with the lowest dimension. HOPE still has very good results. The Pearson
coefficient grows as the dimension of the embedding grows which implies that
the best results are obtained when the dimension of the space is high enough.
The other algorithms fail to recover the structural equivalence. For medium
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(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 2. Structural equivalence (P2) as a function of embedding dimension.

and large graphs as presented in Table 4, SVD and HOPE still show very good
performance and the higher the dimension of the embedding space, the higher
the correlation. For large graphs, SDNE shows also very good results but it
seems to need more data to be able to learn properly. In the end, SVD seems
to be the best algorithm to capture the second order proximity. It computes a
singular value decomposition which is fast and scalable but SDNE performs also
very well on the largest graphs and, in that case, it can outperform SVD.

5.3 Isomorphic Equivalence (P3)

With the property P3, we investigate the ability of an embedding algorithm to
capture roles in a graph. To do so, we compute the graph edit distance (GED)
between every pair of nodes in the graph and the distance between the vec-
tors of the embedding. Moreover, we sample nodes at random and compute the
GED only between every pair of the sampled nodes thus reducing the computing
time drastically. We sample 10% of the nodes for medium graphs and 1% of the
nodes for large graphs. Experiments have demonstrated that results are robust to
sampling. We present, in Fig. 3 and Table 5, the evolution of the correlation coef-
ficient according to the dimension of the embedding space. The only algorithm
that is supposed to perform well for this property is Struc2vec. Note also that
algorithms which capture the structural equivalence can also give results since
two nodes that are structurally equivalent are also isomorphically equivalent
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Table 4. Structural equivalence (P2). Italic: Best in row. Bold: best.

Dimensions 2 10 100 995

LE 0.593 0.281 0.052 0.044

LLE 0.079 −0.069 −0.244 -0.441

HOPE 0.726 0.909 0.967 0.947

S2V 0.041 0.134 0.137 0.131

N2VA 0.043 −0.038 −0.018 -0.033

N2VB 0.05 −0.055 −0.042 -0.036

SDNE 0.174 0.037 0.034 0.626

SVD 0.823 0.933 0.987 1.0

Verse 0.036 −0.038 0.023 0.141

MDS −0.053 −0.015 −0.048 -0.079

(a) Dancer 1k

Dimensions 2 10 100 1000

LE 0.06 0.077 0.189 0.192

LLE - - -0.724 -0.785

HOPE 0.844 0.723 0.799 0.967

S2V 0.003 0.457 0.744 0.717

N2VA 0.438 0.144 −0.289 0.297

N2VB 0.445 −0.175 −0.342 0.402

SDNE 0.678 0.787 0.952 0.954

SVD 0.795 0.621 0.873 0.983

Verse −0.036 −0.386 −0.186 0.642

(b) BA10k

but the converse is not true. For small graphs, as illustrated in Fig. 3, Struc2vec
(S2V) is nearly always the best. It performs well on medium and large graphs
too as shown in Table 5. However results obtained on other graphs (available in
supplementary material) indicate that Stru2vec is not always much better than
the other algorithms. As a matter of fact, Struc2vec remains the best algorithm
for this measure but it is not totally accurate since the correlation coefficient is
not close to 1 on every graph e.g on Dancer10k in Table 5(b).

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 3. Isomorphic equivalence (P3) as a function of embedding dimension.
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Table 5. Isomorphic equivalence (P3). Italic: Best in row. Bold: best.

Dimensions 2 10 100 995

LE 0.058 0.053 0.023 0.023

LLE 0.004 −0.055 −0.05 −0.111

HOPE 0.687 0.295 0.299 0.126

S2V 0.468 0.761 0.759 0.753

N2VA 0.18 0.08 −0.119 −0.107

N2VB 0.327 0.041 −0.053 −0.03

SDNE nan 0.088 −0.057 0.004

SVD 0.39 0.295 0.284 0.165

Verse 0.077 −0.017 0.006 0.101

MDS 0.018 −0.011 0.001 0.01

(a) Gnp1000

Dimensions 2 10 100 1000

LE −0.068 0.072 0.05 -0.052

LLE −0.088 0.009 −0.008 -0.102

HOPE 0.086 0.075 0.108 0.103

S2V 0.11 0.258 0.431 0.401

N2VA 0.123 0.166 0.38 0.203

N2VB 0.123 0.161 0.204 0.081

SDNE 0.057 0.083 0.035 0.086

SVD 0.053 0.076 0.1 0.102

Verse 0.036 −0.032 −0.071 −0.148

(b) Dancer 10k

5.4 Community Membership (P4)

To study the ability of an embedding to recover the community structure of a
graph (P4), we compare, using Adjusted Mututal Information (AMI) and Nor-
malized (NMI), the partition given by KMeans on the node embeddings and
the ground-truth partition. The results are given only for PPG (averaged over
3 instances) and Dancer graphs (for 20 different graphs) for which the commu-
nity structure (ground truth) is provided by the generators. To obtain them, we
generated planted partition graphs (PPG) with 10 communities and 100 nodes

(a) Embedding in 2 dimensions (b) Embedding in 128 dimensions

(c) Embedding in 2 dimensions (d) Embedding in 128 dimensions

Fig. 4. AMI for community detection on PPG (top) and Dancer (bottom)
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per community. We set the probability of an edge existing between communities
pout = 0.01 and vary the probability of an edge existing within a community pin
from 0.01 (no communities) to 1 (clearly defined communities), thus varying the
modularity of the graph from 0 to 0.7. For Dancer, we generate 20 graphs with
varying community structure by adding between-community edges and remov-
ing within-community edges. Moreover, we apply also usual community detec-
tion algorithms such as Louvain’s modularity maximisation (maxmod) [2] and
Infomap [3] on the graphs. Results are shown in Fig. 4. In low dimension (d = 2,
left of the Figure), every embedding is less efficient than the usual community
detection algorithms. In higher dimension (d = 128, right of the Figure), many
embedding techniques, Verse, MDS, N2V (both versions) and HOPE (on PPG),
are able to have the same results as the best community detection algorithm:
Louvain and obvioulsly for all the methods, AMI increases with the modularity.

6 Conclusion

In this paper, we studied how a wide range of graph embedding techniques pre-
serve essential structural properties of graphs. Most of recent works on graph
embeddings focused on the introduction of new methods and on task-oriented
evaluation but they ignore the rationale of the methods, and only focus on their
performance on a specific task in a particular setting. As a consequence, methods
that have been designed to embed local structures are compared with methods
that should embed global structures on tasks as diverse as link prediction or
community detection. In contrast, we focused on (i) The structural properties
for which each algorithm has been designed, and (ii) How well these proper-
ties are effectively preserved in practice, on networks having diverse topological
properties. As a result, we have shown that no method embed efficiently all
properties, and that most methods embed effectively only one of them. We have
also shown that most of recently introduced methods are outperformed or at
least challenged by older methods specifically designed for that purpose, such
as LE/LLE for P1, SVD for P2, and modularity optimization for P4. Finally,
we have shown that, even when they have been designed to embed a particular
property, most methods fail to do so in every setting. In particular, some algo-
rithms (particularly LE and LLE) have shown an important, non-monotonous
sensibility to the number of dimensions which can be difficult to choose in a non
supervised context.

In order to improve graph embedding methods, we believe that we need to
better understand the nature of produced embeddings. We wish to pursue this
work in two directions, (1) Understanding how those methods can obtain good
results on tasks depending mainly on local structures, such as link prediction,
when they do not encode efficiently local properties, and (2) study how well the
meso-scale structure is preserved by such algorithms.

Acknowledgement. This work has been supported by BITUNAM Project ANR-18-
CE23-0004 and IDEXLYON ACADEMICS Project ANR-16-IDEX-0005 of the French
National Research Agency.
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