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Abstract. Many-objective optimization, which deals with an optimiza-
tion problem with more than three objectives, poses a big challenge to
various search techniques, including evolutionary algorithms. Recently,
a meta-objective optimization approach (called bi-goal evolution, BiGE)
which maps solutions from the original high-dimensional objective space
into a bi-goal space of proximity and crowding degree has received
increasing attention in the area. However, it has been found that BiGE
tends to struggle on a class of many-objective problems where the search
process involves dominance resistant solutions, namely, those solutions
with an extremely poor value in at least one of the objectives but with
(near) optimal values in some of the others. It is difficult for BiGE to get
rid of dominance resistant solutions as they are Pareto nondominated and
far away from the main population, thus always having a good crowd-
ing degree. In this paper, we propose an angle-based crowding degree
estimation method for BiGE (denoted as aBiGE) to replace distance-
based crowding degree estimation in BiGE. Experimental studies show
the effectiveness of this replacement.

Keywords: Many-objective optimization · Evolutionary algorithm ·
Bi-goal evolution · Angle-based crowding degree estimation

1 Introduction

Many-objective optimization problems (MaOPs) refer to the optimization of
four or more conflicting criteria or objectives at the same time. MaOPs exist
in many fields, such as environmental engineering, software engineering, control
engineering, industry, and finance. For example, when assessing the performance
of a machine learning algorithm, one may need to take into account not only
accuracy but also some other criteria such as efficiency, misclassification cost,
interpretability, and security.

There is often no one best solution for an MaOP since the performance
increase in one objective will lead to a decrease in some other objectives.
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In the past three decades, multi-objective evolutionary algorithms (MOEAs)
have been successfully applied in many real-world optimization problems with
low-dimensional search space (two or three conflicting objectives) to search for
a set of trade-off solutions.

The major purpose of MOEAs is to provide a population (a set of opti-
mal individuals or solutions) that balance proximity (converging a population
to the Pareto front) and diversity(diversifying a population over the whole
Pareto front). By considering the two goals above, traditional MOEAs, such
as SPEA2 [13] and NSGA-II [1] mainly focus on the use of Pareto dominance
relations between solutions and the design of diversity control mechanisms.

However, compared with a low-dimensional optimization problem, well-
known Pareto-based evolutionary algorithms lose their efficiency in solving
MaOPs. In MaOPs, most solutions in a population become equally good solu-
tions, since the Pareto dominance selection criterion fails to distinguish between
solutions and drive the population towards the Pareto front. Then the density
criterion is activated to guide the search, resulting in a substantial reduction of
the convergence of the population and the slowdown of the evolution process.
This is termed the active diversity promotion (ADP) phenomenon in [11].

Some studies [6] observed that the main reason for ADP phenomenon is the
preference of dominance resistant solutions (DRSs). DRSs refer to those solutions
that are extremely inferior to others in at least one objective but have near-
optimal values in some others. They are considered as Pareto-optimal solutions
despite having very poor performance in terms of proximity. As a result, Pareto-
based evolutionary algorithms could search a population that is widely covered
but far away from the true Pareto front.

To address the difficulties of MOEAs in high-dimensional search space, one
approach is to modify the Pareto dominance relation. Some powerful algorithms
in this category include: ε-MOEA [2] and fuzzy Pareto dominance [5]. These
methods work well under certain circumstances but they often involve extra
parameters and the performance of these algorithms often depends on the setting
of parameters. The other approach, without considering Pareto dominance rela-
tion, may be classified into two categories: aggregation-based algorithms [15] and
indicator-based algorithms [14]. These algorithms have been successfully applied
to some applications, however, the diversity performance of these aggregation-
based algorithms depends on the distribution of weight vectors. The latter defines
specific performance indicators to guide the search.

Recently, a meta-objective optimization algorithm, called Bi-Goal Evolution
(BiGE) [8] for MaOPs is proposed and becomes the most cited paper published
in the Artificial Intelligence journal over the past four years. BiGE was inspired
by two observations in many-objective optimization: (1) the conflict between
proximity and diversity requirement is aggravated when increasing the number
of objectives and (2) the Pareto dominance relation is not effective in solving
MaOPs. In BiGE, two indicators were used to estimate the proximity and crowd-
ing degree of solutions in the population, respectively. By doing so, BiGE maps
solutions from the original objective space to a bi-goal objective space and deals
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with the two goals by the nondominated sorting. This is able to provide suffi-
cient selection pressure towards the Pareto front, regardless of the number of
objectives that the optimization problem has.

However, despite its attractive features, it has been found that BiGE tends to
struggle on a class of many-objective problems where the search process involves
DRSs. DRSs are far away from the main population and always ranked as good
solutions by BiGE, thus hindering the evolutionary progress of the population.
To address this issue, this paper proposes an angle-based crowding degree esti-
mation method for BiGE (denoted as aBiGE). The rest of the paper is organized
as follows. Section 2 gives some concepts and terminology about many-objective
optimization. In Sect. 3, we present our angle-based crowding degree estimation
method and its incorporation with BiGE. The experimental results are detailed
in Sect. 4. Finally, the conclusions and future work are set out in Sect. 5.

2 Concepts and Terminology

When dealing with optimization problems in the real world, sometimes it may
involve more than three performance criteria to determine how “good” a certain
solution is. These criteria, termed as objectives (e.g., cost, safety, efficiency) need
to be optimized simultaneously, but usually conflict with each other. This type of
problem is called many-objective optimization problem (MaOP). A minimization
MaOP can be mathematically defined as follows:

minimize F (x) = (f1(x), f2(x), ..., fN (x))
subject to gj(x) ≤ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

x = (x1, x2, ..., xM ), x ∈ Ω

(1)

where x denotes an M -dimensional decision variable vector from the feasible
region in the decision space Ω, F (x) represents an N -dimensional objective vec-
tor (N is larger than three), fi(x) is the i-th objective to be minimized, objec-
tive functions f1, f2, ..., fN constitute N -dimensional space called the objective
space, gj(x) ≤ 0 and hk(x) = 0 define J inequality and K equality constraints,
respectively.

Definition 1 (Pareto Dominance). Given two decision vectors x, y ∈ Ω of
a minimization problem, x is said to (Pareto) dominate y (denoted as x ≺ y),
or equivalently y is dominated by x, if and only if [4]

∀ i ∈ (1, 2, ..., N) : fi(x) ≤ fi(y) ∧ ∃ i ∈ (1, 2, ..., N) : fi(x) < fi(y). (2)

Namely, given two solutions, one solution is said to dominate the other solu-
tion if it is at least as good as the other solution in any objective and is strictly
better in at least one objective.
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Definition 2 (Pareto Optimality). A solution x ∈ Ω is said to be Pareto
optimal if and only if there is no solution y ∈ Ω dominates it. Those solutions
that are not dominated by any other solutions is said to be Pareto-optimal (or
non-dominated).

Definition 3 (Pareto Set). All Pareto-optimal (or non-dominated) solutions
in the decision space constitute the Pareto set (PS).

Definition 4 (Pareto Front). The Pareto front (PF) is referred to corre-
sponding objective vectors to a Pareto set.

Definition 5 (Dominance Resistant Solution). Given a solution set, dom-
inance resistant solution (DRS) is referred to the solution with an extremely poor
value in at least one objective, but with near-optimal value in some other objective.

3 The Proposed Algorithm: aBiGE

3.1 A Brief Review of BiGE

Algorithm 1 shows the basic framework of BiGE. First, a parent population with
M solutions is randomly initialized. Second, proximity and crowding degree for
each solution is estimated, respectively. Third, in the mating selection, individ-
uals that have better quality with regards to the proximity and crowding degree
tend to become parents of the next generation. Afterward, variation operators
(e.g., crossover and mutation) are applied to these parents to produce an off-
spring population. Finally, the environmental selection is applied to reduce the
expanded population of parents and offspring to M individuals as the new parent
population of the next generation.

Algorithm 1. Basic Framework of BiGE
Require: P (current population), M (population size)
1: P = Initialization(P )
2: while termination criterion not fulfilled do
3: Proximity Estimation(P )
4: Crowding Degree Estimation(P )
5: P ′ = Mating Selection(P )
6: P ′′ = V ariation(P ′)
7: Q = P ′ ⋃ P ′′

8: P = Environmental Selection(Q)
9: end while

10: return P
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In particular, a simple aggregation function is adopted to estimate the prox-
imity of an individual. For an individual x in a population, denoted as fp(x), its
aggregation value is calculated by the sum of each normalized objective value in
the range [0, 1] (lines 3 in Algorithm1), formulated as [8]:

fp(x) =
N∑

j=1

f̃j(x). (3)

where f̃j(x) denotes the normalized objective value of individual x in the j-th
objective, and N is the number of objectives. A smaller fp value of an individual
usually indicates a good performance on proximity. In particular, for a DRS, it
is more likely to obtain a significantly large fp value in comparison with other
individuals in a population.

In addition, the crowding degree of an individual x (lines 4 in Algorithm1)
is defined as follows [8]:

fc(x) = (
∑

y∈Ω,x �=y

sh(x, y))1/2. (4)

where sh(x, y))1/2 denotes a sharing function. It is a penalized Euclidean distance
between two individuals x and y by using a weight parameter, defined as follows:

sh(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(0.5(1 − d(x,y)
r

))2, if d(x, y) < r, fp(x) < fp(y)

(1.5(1 − d(x,y)
r

))2, if d(x, y) < r, fp(x) > fp(y)
rand(), if d(x, y) < r, fp(x) = fp(y)
0, otherwise

(5)

where r is the radius of a niche, adaptively calculated by r = 1/ N
√

M (M is the
population size and N is the number of objectives). The function rand() means to
assign either sh(x, y) = (0.5(1−[d(x, y)/r]))2 and sh(y, x)=(1.5(1−[d(x, y)/r]))2

or sh(x, y)=(1.5(1−[d(x, y)/r]))2 and sh(y, x)=(0.5(1−[d(x, y)/r]))2 randomly.
Individuals with lower crowding degree imply better performance on diversity.

It is observed that BiGE tends to struggle on a class of MaOPs where the search
process involves DRSs, such as DTLZ1 and DTLZ3 (in a well-known benchmark
test suite DTLZ [3]). Figure 1 shows the true Pareto front of the eight-objective
DTLZ1 and the final solution set of BiGE in one typical run on the eight-objective
DTLZ1 by parallel coordinates. The parallel coordinates map the original many-
objective solution set to a 2D parallel coordinates plane. Particularly, Li et al. in
[9] systematically explained how to read many-objective solution sets in parallel
coordinates, and indicates that parallel coordinates can partly reflect the quality
of a solution set in terms of convergence, coverage, and uniformity.

Clearly, there are some solutions that are far away from the Pareto front in
BiGE, with the solution set of eight-objective DTLZ1 ranging from 0 to around
450 compared to the Pareto front ranging from 0 to 0.5 on each objective. Such
solutions always have a poor proximity degree and a good crowding degree (esti-
mated by Euclidean distance)in bi-goal objective space (i.e., convergence and
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(a) The true Pareto front (b) The final solution set of BiGE

Fig. 1. The true Pareto front and the final solution set of BiGE on the eight-objective
DTLZ1, shown by parallel coordinates.

diversity), and will be preferred since there is no solution in the population that
dominates them in BiGE. These solutions are detrimental for BiGE to converge
the population to the Pareto front considering their poor performance in terms
of convergence. A straightforward method to remove DRSs is to change the
crowding degree estimation method.

3.2 Basic Idea

The basic idea of the proposed method is based on some observations of DRSs.
Figure 2 shows one typical situation of a non-dominated set with five individuals
including two DRSs (i.e, A and E) in a two-dimensional objective minimization
scenario.

As seen, it is difficult to find a solution that could dominate DRSs by esti-
mating the crowding degree using Euclidean distance. Take individual A as an
example, it performs well on objective f1 (slightly better than B with a near-
optimal value 0) but inferior to all the other solutions on objective f2. It is
difficult to find a solution with better value than A on objective f1, same as
individual E on objective f2. A and E (with poor proximity degree and good
crowding degree) are considered as good solutions and have a high possibility
to survive in the next generation in BiGE. However, the results would be dif-
ferent if the distance-based crowding degree estimation is replaced by a vector
angle. It can be observed that (1) an individual in a crowded area would have
a smaller vector angle to its neighbor compared to the individual in a sparse
area, e.g., C and D, (2) a DRS would have an extremely small value of vector
angle to its neighbor, e.g., the angle between A and B or the angle between E
and D. Namely, these DRSs would be assigned both poor proximity and crowd-
ing degrees, and have a high possibility to be deleted during the evolutionary
process. Therefore, vector angles have the advantage to distinguish DRSs in the
population and could be considered into crowding degree estimation.
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Fig. 2. An illustration of a population of five solutions with two DRSs - A and E. They
have good crowding degrees estimated by the Euclidean distance, but poor crowding
degrees calculated by the vector angle between two neighbors.

3.3 Angle-Based Crowding Degree Estimation

Inspired by the work in [12], we propose a novel angle-based crowding degree esti-
mation method, and integrate it into the BiGE framework (line 4 in Algorithm1),
called aBiGE. Before estimating the diversity of an individual in a population in
aBiGE, we first introduce some basic definitions.

Norm. For individual xi, its norm, denoted as norm(xi) in the normalzied
objective space defined as [12]:

norm(xi) =

√√√√
N∑

j=1

f̃j(xi)2. (6)

Vector Angles. The vector angle between two individuals xi and xk is defined
as follows [12]:

angle xi→xk
= arccos

∣∣∣∣
F ′(xi) • F ′(xk)

norm(xi) · norm(xk)

∣∣∣∣ . (7)



Angle-Based Crowding Degree Estimation for Many-Objective Optimization 581

where F ′(xi) • F ′(xk) is the inner product between F ′(xi) and F ′(xk) defined
as:

F ′(xi) • F ′(xk) =
N∑

j=1

f̃j(xi) · f̃j(xk). (8)

Note that angle xi→xk
∈ [0, π/2].

The vector angle from an individual xi ∈ Ω to the population is defined as
the minimum vector angle between xi and another individual in a population
P : θ(xi) = anglexi→P

When an individual x is selected into archive in the environmental selection,
respectively, θ(x) value will be punished. There are several factors need to be
considered in order to achieve a good balance between proximity and diversity.

– A severe penalty should be imposed on individuals that have more adjacent
individuals in a niche. Inspired by the punishment method of crowding degree
estimation, a punishment to an individual x is based on the number of indi-
viduals that have a lower proximity degree compared to x is counted (denote
as c). The punishment is aggravated with an increase of c.

– In order to avoid the situation that some individuals have the same vector
angle value to the population, individuals should be further punished. There-
fore, the penalty is implemented according to the proportion value of θ(x) to
all the individuals in the niche, denoted as p.

Keep the above factors in mind, in aBiGE, the diversity estimation of individual
x ∈ Ω based on vector angles is defined as

fa(x) =
c + 1

θ(x) · (p + 1) +
π

90

. (9)

By applying the angle-based crowding degree estimation method to BiGE
framework in minimizing many-objective optimization problems, we aim to
enhance the selection pressure on those non-dominated solutions in the pop-
ulation of each generation and avoid the negative influence of DRSs in the opti-
mization process. Note that, a smaller value of fa(x) is preferred.

4 Experiments

4.1 Experimental Design

To test the performance of the proposed aBiGE on those MaOPs where the
search process involves DRSs, the experiments are conducted on nine DTLZ
test problems. For each test problem (i.e., DTLZ1, DTLZ3, and DTLZ7), five,
eight, and ten objectives will be considered, respectively.

To make a fair comparison with the state-of-the-art BiGE for MaOPs, we
kept the same settings as [8]. Settings for both BiGE and aBiGE are:

– The population size of both algorithms is set to 100 for all test problems.
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– 30 runs for each algorithm per test problem to decrease the impact of their
stochastic nature.

– The termination criterion of a run is a predefined maximum of 30, 000 eval-
uations, namely 300 generations for test problems.

– For crossover and mutation operators, crossover and mutation probability are
set to 1.0 and 1/M (where M represents the number of decision variables)
respectively. In particular, uniform crossover and polynomial mutation are
used.

Algorithms performance is assessed by performance indicators that consider
both proximity and diversity. In this paper, a modified version of the original
inverted generational distance indicator (IGD) [15], called (IGD+) [7] is chosen
as the performance indicator. Although IGD has been widely used to evaluate
the performance of MOEAs on MaOPs, it has been shown [10] that IGD needs
to be replaced by IGD+ to make it compatible with Pareto dominance. IGD+
evaluates a solution set in terms of both convergence and diversity, and a smaller
value indicates better quality.

4.2 Performance Comparison

Test Problems with DRSs. Table 1 shows the mean and standard deviation
of IGD+ metric results on nine DTLZ test problems with DRSs. For each test
problem, among different algorithms, the algorithm that has the best result
based on the IGD+ metric is shown in bold. As can be seen from the table,
for MaOPs with DRSs, the proposed aBiGE performs significantly better than
BiGE on all test problems in terms of convergence and diversity.

Table 1. Mean and standard deviation of IGD+ metric on nine DTLZ test problems.
The best result for each test problem is highlighted in boldface.

Problem Obj. BiGE aBiGE

DTLZ1 5 8.4207E−01 (3.59E−01) 1.1768E−01 (3.41E−02)

8 1.9350E+00 (1.27E+00) 1.9495E−01 (9.44E−02)

10 1.9653E+00 (1.36E+00) 2.2763E−01 (9.57E−02)

DTLZ3 5 1.5705E+01 (5.87E+00) 6.0008E+00 (3.50E+00)

8 3.3434E+01 (1.17E+01) 9.6401E+00 (6.30E+00)

10 3.5720E+01 (1.58E+01) 1.2780E+01 (5.40E+00)

DTLZ7 5 4.6666E−01 (1.52E−01) 3.1701E−01 (6.48E−02)

8 3.0415E+00 (6.03E−01) 2.6350E+00 (8.59E−01)

10 5.6152E+00 (7.41E−01) 4.0059E+00 (4.53E−01)
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To visualize the experimental results, Figs. 3 and 4 plot, by parallel coordi-
nate, the final solutions of one run with respect to five-objective DTLZ1 and five-
objective DTLZ7, respectively. This run is associated with the particular run with
the closest results to the mean value of IGD+. As shown in Fig. 3(a), the approx-
imation set obtained by BiGE has an inferior convergence on the five-objective
DTLZ1, with the range of its solution set is between 0 and about 400 in contrast
to the Pareto front ranging from 0 to 0.5 on each objective. From Fig. 3 (b), it can
be observed that the obtained solution set of the proposed aBiGE converge to the
Pareto front and only a few individuals do not converge.
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Fig. 3. The final solution sets of the two algorithms on the five-objective DTLZ1,
shown by parallel coordinates.
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Fig. 4. The final solution sets of the two algorithms on the five-objective DTLZ7,
shown by parallel coordinates.

For the solutions of the five-objective DTLZ7, the boundary of the first four
objectives is in the range [0, 1], and the boundary of the last objective is in the
range [3.49, 10] according to the formula of DTLZ7. As can be seen from (Fig. 4),
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all solutions of the proposed aBiGE appear to converge into the Pareto front.
In contrast, some solutions (with objective value beyond the upper boundary in
5th objective) of BiGE fail to reach the Pareto front. In addition, the solution
set of the proposed aBiGE has better extensity than BiGE on the boundaries.
In particular, the solution set of BiGE fails to cover the region from 3.49 to 6
of the last objective and the solution set of the proposed aBiGE does not cover
the range of Pareto front below 4 on 5th objective.

Test Problem Without DRSs. Figure 5 gives the final solution set of both
algorithms on the ten-objective DTLZ2 in order to visualize their distribution on
the MaOPs without DRSs. As can be seen, the final solution sets of both algo-
rithms could coverage the Pareto front with lower and upper boundary within
[0,1] of each objective. Moreover, refer to [9], parallel coordinates in Fig. 5 partly
reflect the diversity of solutions obtained by aBiGE is sightly worse than BiGE.
This observation can be assessed by the IGD+ performance indicator where
BiGE obtained a slightly lower (better) than the proposed aBiGE.
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Fig. 5. The final solution sets of BiGE and aBiGE on the ten-objective DTLZ2 and
evaluated by IGD+ indicator, shown by parallel coordinates. (a) BiGE (IGD+ =
2.4319E−01) (b) aBiGE (IGD+ = 2.5021E−01).

5 Conclusion

In this paper, we have addressed an issue of a well-established evolutionary many-
objective optimization algorithm BiGE on the problems with high probability to
produce dominance resistant solutions during the search process. We have pro-
posed an angle-based crowding distance estimation method to replace distance-
based estimation in BiGE, thus significantly reducing the effect of dominance
resistant solutions to the algorithm. The effectiveness of the proposed method has
been well evaluated on three representative problems with dominance resistant
solutions. It is worth mentioning that for problems without dominance resistant
solutions the proposed method performs slightly worse than the original BiGE.
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In the near future, we would like to focus on the problems without dominance
resistant solutions, aiming at a comprehensive improvement of the algorithm on
both types of problems.
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