Skip to main content

Comparing Destructive Strategies for Attacking Networks

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

The failures of multiple elements in a network can have disastrous consequences on its operation. Therefore, understanding the robustness of networks that experience multiple failures is utterly important. In this chapter, we review well-defined metrics related to the topology and resilience of the network and use them to analyze the robustness of real-world networks under multiple failures. We consider 52 real-world networks from three different infrastructure domains, namely metro networks, power grids and telecommunication networks. We quantify the impact of targeted node removals from a network on the relative size of the largest connected component of the network. Nodes are attacked according to traditional centrality metrics, such as degree, betweenness, closeness and the principal adjacency matrix eigenvector. In addition, we consider attacks based upon the recently proposed “zeta-vector”, that is the diagonal elements of the pseudo-inverse of the Laplacian matrix. Finally, we compare and rank these node-removal strategies and apply to the selected set of real-world infrastructures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    IEEE Power Systems Test Case Archive, available at: https://www2.ee.washington.edu/research/pstca/.

  2. 2.

    European power grids data set, available at: https://wiki.openmodinitiative.org/wiki/Transmission network data sets.

  3. 3.

    University of Girona, Network Robustness simulator, available at: http://nrs.udg.edu/.

  4. 4.

    In fact, given a network destroyed by the targeted attacks, the following question arises: “What is the best strategy to reconnect the attacked nodes to return to the initial topology?”, or, in other words: “In which order should the isolated nodes be reconnected?” In this reconstruction scenario, the robustness value of the network should increase as fast as possible.

References

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97. https://doi.org/10.1103/RevModPhys.74.47. https://link.aps.org/doi/10.1103/RevModPhys.74.47

  2. Barabasi A (2016) Network Science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Cetinay H, Devriendt K, Van Mieghem P (2018) Nodal vulnerability to targeted attacks in power grids. Appl Netw Sci 3(1):34

    Article  Google Scholar 

  4. Cetinay H, Kuipers FA, Van Mieghem P (2018) A topological investigation of power flow. IEEE Syst J 12(3):2524–2532. https://doi.org/10.1109/JSYST.2016.2573851

    Article  Google Scholar 

  5. Cetinay H, Soltan S, Kuipers FA, Zussman G, Van Mieghem P (2018) Analyzing cascading failures in power grids under the AC and DC power flow models. SIGMETRICS Perform Eval Rev 45(3):198–203

    Article  Google Scholar 

  6. Derrible S, Kennedy C (2010) The complexity and robustness of metro networks. Phys A Stat Mech Appl 389(17):3678–3691. https://doi.org/10.1016/j.physa.2010.04.008. http://www.sciencedirect.com/science/article/pii/S0378437110003262

  7. Dorogovtsev SN, Mendes JF (2013) Evolution of networks: from biological to the internet and WWW. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. da F Costa L, Rodrigues FA, Travieso G, Boas PRV (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242. https://doi.org/10.1080/00018730601170527

  9. Ellens W (2011) Effective resistance and other graph measures for network robustness. Master thesis, Leiden University

    Google Scholar 

  10. Ellens W, Spieksma F, Van Mieghem P, Jamakovic A, Kooij R (2011) Effective graph resistance. Linear Algebra Appl 435(10):2491–2506. https://doi.org/10.1016/j.laa.2011.02.024

    Article  MathSciNet  MATH  Google Scholar 

  11. Estrada E (2016) The structure of complex networks: theory and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  12. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. https://doi.org/10.1016/0378-8733(78)90021-7. http://www.sciencedirect.com/science/article/pii/0378873378900217

  13. Hernandez JM, Van Mieghem P (2011) Classification of graph metrics. TU Delft reports report20111111 (2011)

    Google Scholar 

  14. Iqbal F, Kuipers F (2017) On centrality-related disaster vulnerability of network regions. In: 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM), pp 1–6. https://doi.org/10.1109/RNDM.2017.8093023

  15. Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and centrality of complex networks. PLoS ONE 8(4):1–17. https://doi.org/10.1371/journal.pone.0059613

    Article  Google Scholar 

  16. Jamakovic A, Van Mieghem P (2008) On the robustness of complex networks by using the algebraic connectivity. In: Das A, Pung HK, Lee FBS, Wong LWC (eds) NETWORKING 2008 ad hoc and sensor networks, wireless networks, next generation internet. Springer, Berlin, pp 183–194

    Chapter  Google Scholar 

  17. Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O (2005) Centrality indices. Springer, Berlin, pp 16–61. https://doi.org/10.1007/978-3-540-31955-9_3

  18. Li C, Wang H, Van Mieghem P (2012) Bounds for the spectral radius of a graph when nodes are removed. Linear Algebra Appl 437(1):319–323. https://doi.org/10.1016/j.laa.2012.02.023. http://www.sciencedirect.com/science/article/pii/S0024379512001693

  19. Lü L, Chen D, Ren XL, Zhang QM, Zhang YC, Zhou T (2016) Vital nodes identification in complex networks. Phys Rep 650:1–63

    Article  MathSciNet  Google Scholar 

  20. Martin Hernandez J, Li Z, Van Mieghem P (2014) Weighted betweenness and algebraic connectivity. J Complex Netw 2(3):272–287. https://doi.org/10.1093/comnet/cnu007

    Article  MATH  Google Scholar 

  21. McPhail C, Maier H, Kwakkel JH, Giuliani M, Castelletti A, Westra S (2018) Robustness metrics: how are they calculated, when should they be used and why do they give different results? Earth’s Future 6(2):169–191. https://doi.org/10.1002/2017EF000649. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017EF000649

  22. Monsuur H, Kooij R, Van Mieghem P (2012) Analysing and modelling the interconnected cyberspace, Chap. 8. In: Ducheine P, Osinga F, Soeters J (eds) Cyber warfare: critical perspectives. Asser Press, The Hague

    Google Scholar 

  23. Neumayer S, Modiano E (2016) Network reliability under geographically correlated line and disk failure models. Comput Netw 94:14–28

    Article  Google Scholar 

  24. Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  25. Oostenbrink J, Kuipers F (2017) Computing the impact of disasters on networks. SIGMETRICS Perform Eval Rev 45(2):107–110. https://doi.org/10.1145/3152042.3152075. http://doi.acm.org/10.1145/3152042.3152075

  26. Oostenbrink J, Kuipers F, Heegaard P, Helvik B (2015) Evaluating local disaster recovery strategies. SIGMETRICS Perform Eval Rev (2018). https://fernandokuipers.nl/papers/CINS2018.pdf

  27. Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst 21(6):11–25

    Article  Google Scholar 

  28. Rueda DF, Calle E, Marzo JL (2017) Robustness comparison of 15 real telecommunication networks: structural and centrality measurements. J Netw Syst Manage 25(2):269–289. https://doi.org/10.1007/s10922-016-9391-y

    Article  Google Scholar 

  29. Sterbenz JPG, Hutchison D, Çetinkaya EK, Jabbar A, Rohrer JP, Schöller M, Smith P (2010) Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput Netw 54(8):1245–1265. https://doi.org/10.1016/j.comnet.2010.03.005. http://www.sciencedirect.com/science/article/pii/S1389128610000824 (Resilient and survivable networks)

  30. Sterbenz JPG, Hutchison D, Çetinkaya EK, Jabbar A, Rohrer JP, Schöller M, Smith P (2010) Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput Netw 54(8):1245–1265

    Article  Google Scholar 

  31. Talbot D (2014) Massive internet outage points to flaws in policy and technology. www.technologyreview.com/s/530431/massive-internet-outage-points-to-flaws-in-policy-and-technology/. Retrieved 2 Oct 2018

  32. Trajanovski S, Marin-Hernandez J, Winterbach W, Van Mieghem P (2013) Robustness envelopes of networks. J Complex Netw 1(1):44–62. https://doi.org/10.1093/comnet/cnt004

    Article  Google Scholar 

  33. Van Mieghem P (2005) Robustness of large networks. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol 3, pp 2372–2377. https://doi.org/10.1109/ICSMC.2005.1571503

  34. Van Mieghem P (2009) Performance analysis of communications networks and systems, 1st edn. Cambridge University Press, New York

    MATH  Google Scholar 

  35. Van Mieghem P, Devriendt K, Cetinay H (2017) Pseudoinverse of the Laplacian and best spreader node in a network. Phys Rev E 96:032311. https://doi.org/10.1103/PhysRevE.96.032311. https://link.aps.org/doi/10.1103/PhysRevE.96.032311

  36. Van Mieghem P, Doerr CL, Wang H, Hernandez JM, Hutchison D, Karaliopoulos M, Kooij RE (2010) A framework for computing topological network robustness. TU Delft reports report20101218

    Google Scholar 

  37. Wang H, Hernandez JM, Van Mieghem P (2008) Betweenness centrality in a weighted network. Phys Rev E 77:046105. https://doi.org/10.1103/PhysRevE.77.046105. https://link.aps.org/doi/10.1103/PhysRevE.77.046105

  38. Wang X, Koç Y, Derrible S, Ahmad SN, Pino WJ, Kooij RE (2017) Multi-criteria robustness analysis of metro networks. Phys A Stat Mech Appl 474:19–31. https://doi.org/10.1016/j.physa.2017.01.072. http://www.sciencedirect.com/science/article/pii/S0378437117300675

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by COST (European Cooperation in Science and Technology). The authors thank Dr. Carlos Natalino da Silva for his valuable comments and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hale Cetinay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cetinay, H., Mas-Machuca, C., Marzo, J.L., Kooij, R., Van Mieghem, P. (2020). Comparing Destructive Strategies for Attacking Networks. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics