Skip to main content

Extracting Community Structure in Multi-relational Network via DeepWalk and Consensus Clustering

  • Conference paper
  • First Online:
Book cover Intelligent Human Computer Interaction (IHCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11886))

Included in the following conference series:

  • 681 Accesses

Abstract

In the real world, entities are often connected via multiple relations, forming multi-relational network. These complex networks need novel models for their representation and sophisticated tools for their analysis. Community detection is one of the primary tools for the structural and functional analysis of the networks at the macroscopic level. Already a lot of research work has been done on discovering communities in the networks with only single relation. However, the research work on discovering communities in multi-relational network (MRN) is still in its early stages. In this article, we have proposed a novel approach to extract the communities in a multi-relational network using DeepWalk network embedding technique and Consensus clustering. Empirical study is conducted on the real-world publicly available Twitter datasets. In our observations we found that our proposed model performs significantly better than some of the baseline approaches based on spectral clustering algorithm, modularity maximization, block clustering and non-negative matrix factorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Community mining from multi-relational networks. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 445–452. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_44

    Google Scholar 

  2. Kim, J., Lee, J.G.: Community detection in multi-layer graphs: a survey. ACM SIGMOD Rec. 44(3), 37–48 (2015)

    Google Scholar 

  3. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  4. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recogn. Artif. Intell. 25(03), 337–372 (2011)

    MathSciNet  Google Scholar 

  5. Hastings, M.B.: Community detection as an inference problem. Phys. Rev. E 74(3), 035102 (2006)

    Google Scholar 

  6. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Google Scholar 

  7. Newman, M.E.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88(4), 042822 (2013)

    Google Scholar 

  8. Liu, X., Liu, W., Murata, T., Wakita, K.: A framework for community detection in heterogeneous multi-relational networks. Adv. Complex Syst. 17(06), 1450018 (2014)

    MathSciNet  Google Scholar 

  9. Lin, Y.R., Sun, J., Castro, P., Konuru, R., Sundaram, H., Kelliher, A.: Metafac: community discovery via relational hypergraph factorization. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 527–536. ACM (2009)

    Google Scholar 

  10. Verma, A., Bharadwaj, K.K.: Identifying community structure in a multi-relational network employing non-negative tensor factorization and GA k-means clustering. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 7(1), e1196 (2017)

    Google Scholar 

  11. Verma, A., Bharadwaj, K.K.: Discovering communities in heterogeneous social networks based on non-negative tensor factorization and cluster ensemble approach. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE 2015. LNCS (LNAI), vol. 9468, pp. 150–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26832-3_15

    Google Scholar 

  12. Guesmi, S., Trabelsi, C., Latiri, C.: CoMRing: a framework for community detection based on multi-relational querying exploration. Procedia Comput. Sci. 96, 627–636 (2016)

    Google Scholar 

  13. Ali, H.T., Liu, S., Yilmaz, Y., Couillet, R., Rajapakse, I., Hero, A.: Latent heterogeneous multilayer community detection. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8142-8146. IEEE, April 2019

    Google Scholar 

  14. Burgess, M., Adar, E., Cafarella, M.: Link-prediction enhanced consensus clustering for complex networks. PLoS ONE 11(5), e0153384 (2016)

    Google Scholar 

  15. Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Sci. rep. 2, 336 (2012)

    Google Scholar 

  16. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)

    Google Scholar 

  17. Valles-Catala, T., Massucci, F.A., Guimera, R., Sales-Pardo, M.: Multilayer stochastic block models reveal the multilayer structure of complex networks. Phys. Rev. X 6(1), 011036 (2016)

    Google Scholar 

  18. Reyes, P., Rodriguez, A.: Stochastic blockmodels for exchangeable collections of networks. arXiv preprint arXiv:1606.05277 (2016)

  19. Barbillon, P., Donnet, S., Lazega, E., Bar-Hen, A.: Stochastic block models for multiplex networks: an application to a multilevel network of researchers. J. Roy. Stat. Soc. Ser. A (Stat. Soc.) 180(1), 295–314 (2017)

    MathSciNet  Google Scholar 

  20. Pramanik, S., Tackx, R., Navelkar, A., Guillaume, J.L., Mitra, B.: Discovering community structure in multilayer networks. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 611–620. IEEE, October 2017

    Google Scholar 

  21. Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1258–1266. ACM (2012)

    Google Scholar 

  22. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent closed quasi-clique discovery from large dense graph databases. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 797–802. ACM (2006)

    Google Scholar 

  23. Arthur, D., Vassilvitskii, S.: k-means ++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  24. Kuncheva, L.I., Hadjitodorov, S.T., Todorova, L.P.: Experimental comparison of cluster ensemble methods. In: 2006 9th International Conference on Information Fusion, pp. 1–7. IEEE (2006)

    Google Scholar 

  25. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). https://doi.org/10.1007/b107408

    MATH  Google Scholar 

  26. Greene, D., Cunningham, P.: Producing a unified graph representation from multiple social network views. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 118–121. ACM (2013)

    Google Scholar 

  27. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    MathSciNet  Google Scholar 

  28. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural. Inf. Process. Syst. 13, 556–562 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D., Verma, A. (2020). Extracting Community Structure in Multi-relational Network via DeepWalk and Consensus Clustering. In: Tiwary, U., Chaudhury, S. (eds) Intelligent Human Computer Interaction. IHCI 2019. Lecture Notes in Computer Science(), vol 11886. Springer, Cham. https://doi.org/10.1007/978-3-030-44689-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44689-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44688-8

  • Online ISBN: 978-3-030-44689-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics