Skip to main content

Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT

  • Chapter
  • First Online:
Convergence of Artificial Intelligence and the Internet of Things

Part of the book series: Internet of Things ((ITTCC))

  • 874 Accesses

Abstract

We present a mechanism to predict privacy decisions of users in Internet of Things (IoT) environments, through data mining and machine learning techniques. To construct predictive models, we tested several different machine learning models, combinations of features, and model training strategies on human behavioral data collected from an experience-sampling study. Experimental results showed that a machine learning model called linear model and deep neural networks (LMDNN) outperforms conventional methods for predicting users’ privacy decisions for various IoT services. We also found that a feature vector, composed of both contextual parameters and privacy segment information, provides LMDNN models with the best predictive performance. Lastly, we proposed a novel approach called one-size-fits-segment modeling, which provides a common predictive model to a segment of users who share a similar notion of privacy. We confirmed that one-size-fits-segment modeling outperforms previous approaches, namely individual and one-size-fits-all modeling. From a user perspective, our prediction mechanism takes contextual factors embedded in IoT services into account and only utilizes a small amount of information polled from the users. It is therefore less burdensome and privacy-invasive than the other mechanisms. We also discuss practical implications for building predictive models that make privacy decisions on behalf of users in IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The TensorFlow implementation of LMDNN provides an API that enables programmers to selectively configure a wide, deep, or wide and deep model.

  2. 2.

    A device of ICS (\(\textit{C}_\textit{3}=6\)) takes a photo of you (\(\textit{C}_\textit{2}=11\)). This happens once (\(\textit{C}_\textit{5}=0\)), while you are in DBH (\(\textit{C}_\textit{1}=3\)), for safety purposes (\(\textit{C}_\textit{4}=1\)), namely to determine if you are a wanted criminal.

  3. 3.

    Number of respondents (scenario ID): 140 (#20), 138 (#73), 136 (#93), 162 (#111).

  4. 4.

    1—(nonzero entries/total entries in a user-scenario matrix).

  5. 5.

    Mode values of these attributes are male, 18–25, and undergraduate students, respectively.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Economics of Information Security, pp. 165–178. Springer (2004)

    Google Scholar 

  3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  4. Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. 52, 98–113 (2016)

    Article  Google Scholar 

  5. Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. 26(1), 69–101 (2016)

    Article  Google Scholar 

  6. Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Comput. Intell. 26(4), 449–467 (2010)

    Article  MathSciNet  Google Scholar 

  7. Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011)

    Article  Google Scholar 

  8. Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M., Gazaki, M., Hubaux, J.P.: A machine-learning based approach to privacy-aware information-sharing in mobile social networks. Pervasive Mob. Comput. 25, 125–142 (2016)

    Article  Google Scholar 

  9. Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155. Springer (2017)

    Google Scholar 

  10. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)

    Google Scholar 

  11. Chow, R., Egelman, S., Kannavara, R., Lee, H., Misra, S., Wang, E.: HCI in business: a collaboration with academia in IoT privacy. In: International Conference on HCI in Business, pp. 679–687. Springer (2015)

    Google Scholar 

  12. Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)

    Article  Google Scholar 

  13. Connelly, K., Khalil, A., Liu, Y.: Do I do what I say?: Observed versus stated privacy preferences. Hum. Comput. Interact. 2007, 620–623 (2007)

    Google Scholar 

  14. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World Wide Web, pp. 351–360. ACM (2010)

    Google Scholar 

  15. Hine, C.: Privacy in the marketplace. Inform. Soc. 14(4), 253–262 (1998)

    Article  Google Scholar 

  16. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)

    Article  MathSciNet  Google Scholar 

  17. Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8), 34–39 (1997)

    Google Scholar 

  18. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)

    Article  Google Scholar 

  19. Jensen, C., Potts, C., Jensen, C.: Privacy practices of Internet users: self-reports versus observed behavior. Int. J. Hum. Comput. Stud. 63(1), 203–227 (2005)

    Article  Google Scholar 

  20. Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:1311.3715 (2013)

  21. Khatibloo, F.: It’s Here! Forrester’s Consumer Privacy Segmentation. Available at https://go.forrester.com/blogs/its-here-forresters-consumer-privacy-segmentation/. 15 Dec 2016

  22. Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum. Comput. Stud. 71(12), 1144–1162 (2013)

    Article  Google Scholar 

  23. Kumaraguru, P., Cranor, L.F.: Privacy indexes: a survey of Westin’s studies. Carnegie Mellon University, Pittsburgh, PA (2005)

    Google Scholar 

  24. Lankton, N., McKnight, D., Tripp, J.: Privacy management strategies: an exploratory cluster analysis. In: Proceedings of the 22nd Americas Conference on Information Systems (AMCIS 2016), pp. 1–10 (2016)

    Google Scholar 

  25. Lee, H., Kobsa, A.: Understanding user privacy in Internet of Things environments. In: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pp. 407–412. IEEE (2016)

    Google Scholar 

  26. Lee, H., Kobsa, A.: Privacy preference modeling and prediction in a simulated campuswide IoT environment. In: Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on, pp. 276–285. IEEE (2017)

    Google Scholar 

  27. Lee, H., Upright, C., Eliuk, S., Kobsa, A.: Personalized object recognition for augmenting human memory. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1054–1061. ACM (2016)

    Google Scholar 

  28. Li, Y., Kobsa, A., Knijnenburg, B.P., Nguyen, C., et al.: Cross-cultural privacy prediction. Proc. Priv. Enhancing Technol. 2017(2), 113–132 (2017)

    Article  Google Scholar 

  29. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings. In: Proceedings of the 10th Symposium on Usable Privacy and Security (SOUPS 2014), pp. 199–212 (2014)

    Google Scholar 

  30. Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S., Sadeh, N., Acquisti, A., Agarwal, Y.: Follow my recommendations: a personalized privacy assistant for mobile app permissions. In: Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016), pp. 27–41 (2016)

    Google Scholar 

  31. Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 33(2), 111–117 (2019)

    Article  Google Scholar 

  32. Madhulatha, T.S.: An overview on clustering methods. arXiv preprint arXiv:1205.1117 (2012)

  33. Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), 139–145 (2018)

    Article  Google Scholar 

  34. Naeini, P.E., Bhagavatula, S., Habib, H., Degeling, M., Bauer, L., Cranor, L., Sadeh, N.: Privacy Expectations and preferences in an IoT world. In: Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS 2017), pp. 399–412 (2017)

    Google Scholar 

  35. Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007)

    Article  Google Scholar 

  36. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  37. Perera, C., Ranjan, R., Wang, L., Khan, S.U., Zomaya, A.Y.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015)

    Article  Google Scholar 

  38. Roever, C., Raabe, N., Luebke, K., Ligges, U., Szepannek, G., Zentgraf, M.: Package klaR. Available at https://cran.r-project.org/web/packages/klaR/klaR.pdf/. 20 Feb 2015

  39. Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009)

    Article  Google Scholar 

  40. Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Cheng, P.C.: User centric policy management in online social networks. In: Policies for Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium on, pp. 9–13. IEEE (2010)

    Google Scholar 

  41. Shehab, M., Touati, H.: Semi-supervised policy recommendation for online social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pp. 360–367. IEEE (2012)

    Google Scholar 

  42. Shi, S., Zhang, M., Lu, H., Liu, Y., Ma, S.: Wide and deep learning in job recommendation: an empirical study. In: Asia Information Retrieval Symposium, pp. 112–124. Springer (2017)

    Google Scholar 

  43. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

    Article  Google Scholar 

  44. Sinha, A., Li, Y., Bauer, L.: What you want is not what you get: predicting sharing policies for text-based content on facebook. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 13–24. ACM (2013)

    Google Scholar 

  45. Spyromitros-Xioufis, E., Petkos, G., Papadopoulos, S., Heyman, R., Kompatsiaris, Y.: Perceived versus actual predictability of personal information in social networks. In: International Conference on Internet Science, pp. 133–147. Springer (2016)

    Google Scholar 

  46. Therneau, T.M., Atkinson, E.J., et al.: An Introduction to Recursive Partitioning Using the RPART Routines. Tech. rep, Mayo Foundation (1997)

    Google Scholar 

Download references

Acknowledgements

This research was funded by NSF Grant SES-1423629. The human subjects research described herein is covered under IRB protocol #2014-1600 at the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosub Lee .

Editor information

Editors and Affiliations

Appendix

Appendix

See Appendix Tables 5 and 6.

Table 5 Contextual parameters
Table 6 Reaction parameters

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, H., Kobsa, A. (2020). Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT. In: Mastorakis, G., Mavromoustakis, C., Batalla, J., Pallis, E. (eds) Convergence of Artificial Intelligence and the Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-44907-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44907-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44906-3

  • Online ISBN: 978-3-030-44907-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics